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Abstract

In this paper, we establish a class of weakly singular integral inequality, which
consists of iterated integral. Under several practical assumptions, the inequality
is solved by adopting novel analysis techniques, such as: change of variable,
amplification method, and inverse function. Explicit bounds for the unknown
functions are given clearly.
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1. Introduction

In 1997 Medved [1] discuss nonlinear singular integral inequalities

u(t) < a(t) + '[; (t—s)” ™ f(s)w(u(s))ds, 1)

and the estimates of solutions are given.
In 2011, Abdeldaim et al. [2] studied a new integral inequality of Gronwall-
Bellman-Pachpatte type

u(®) < Uy + [ [T SUEUE) + [ E@E) + [ g(@uE@deldris
@)

In this paper, on the basis of [1-9], we discuss a nonlinear iterated integral
inequality

u(t) <a(t) + I: (t=)" £ (s)w, (u(S))[u(s)
i It (s—2)* 7 g(D)w, (u(z)[u(z)

+ (=P h(w, (u(£)dEldelos, ®
forall t €[t,,J).
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2. Main result

For convenience, we cite the following lemma and definition:
Definition 1. (see [1])

Let g >0 be a real number and 0 <T<co. We say that a function W:R™ — R
satisfies a condition (q), if
e "[w(u)]* <R(t)w(e *u?),vueR*,t[0,T). 4
where R(t) is a continuous, nonnegative function.
Lemma 1.(see [1])

Let #€[0,1/2],0< p < 1 1

,then 1+ p(f—1) >0 and

pt

P e
ef dssWF(H p(p -1)). (5)

ﬁa—g

Lemam 2. (see [3])
Let o >1is a real numbers, n is a natural number, and A, A,,---, A, be
nonnegative real numbers. Then
(Av+ Az -+ An)* <N A" + A +---+ AY). (6)
Theorem 1.
Let B €[0,2/2](i =1,2,3), w;, W,, W,, satisfy the condition (4) with
o, =Q+8)! 5,0, <0, <03, 0, /0, <2. If u(t) satisfies (3), then
u(t) < et (QHQH QS COMY®, VEelty T, U
where

C(1) =4[, (2 (C(R) + [ N(9)ds) + [ G(s)ds]+ [ T(s)ds,

,(2) = de—(ss) 24 >0,2 € (2,+0) ®
I
o (B
Q@)= W (" (5))ds 12> 0,2€ (25,49) (1)

W, QA ()(QF(S)
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w, (Q;(Q,'(5)))ds

Q. (2) = '[Z > 0,z € (z,,+x),
Zy A2 9
W (Q (3 (SN(Q(Q; () ®
12)
% %,
Ct)=2% % B(t),
B(t) = 2% a%(t),
- B 5 ~
f(t)=2% f(t),
$+q—2—2 ~
gty ="12% % (),
2
- By~
h(t)=2% h(t),
f(s) = 222K, f * (s)R, (s)e,
§(0) = 27K, % g% (7R, (2)e™,
h(&) = (Ky) ™% h® ()R, (&),
'@+ -1
- (0BG Dy
ra+ -1
K2 = ( ( p;i-)pzzgﬁle) )))ql/pz,
@+ -1
and T, is the largest real number such that
T, = Max{t e I,C(t) e DomQ;!, Q;{C (t)} € DomQ;?,
Q,{Q;{C(1)}} € Dom@; '} (13)

Proof.
Let p, =1+ f,(1=12,3). Then
EIE S . B TRy
pi qi 1+ﬂl 1+,B|

and using the Holder inequality, we obtain from (3) that
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u(t) <a()+ [ (t-9)" e f()e "W, (U(Su(s)
+] 5= erg(me ", (u(r))u(r)
+] (0= et h(&)e wy (u())d¢]d]ds
<a)+[], (t-9)"* Ve dsP[[ 1 (s)e *wyt (u(s)u(s)
H[ (=) Perde] [ e g (rws (U(@)[u()
+H[ r- Ve de

<[ e % (W UE)ET T el ] s Ve el

Using (5) in Lemma 1 and (6) in Lemma 2 with N = 2, & = (], from the above
inequality we obtain that

u(t) < a(t) + [f (t—s)PAiDereds]/™ [f f o (s)e ™ wy (u(s)2% " u® (s)
+ 20 [ (s 7) " Ve de]
<[[ e ¥ g% (Owy (U™ u® (7)
+ 2% [[ (- PP de]
<[, & h® ()W ()] Jd ]/ Jds]
<a()+2% ' KYme [ £ (S)e W U(s)[u (s)
+2 K e[ e g (D (U()u" (2)

+ K [[ e ¥ h% (w (U(E)dE] o] Jas] e, (14)

for all t € |. Using the condition (4) in Definition 1 and the inequality (6) in
Lemma2with N=2, o = {, , we obtain from (14) that

U (t) < 2% ta® (t) + 2°% 2K e J‘t‘ £ % ()R, (s)e®w; (e *u (s))[u® (s)e *

#2571, 9% (DR, (D)™ w, (& U (D)u® (e

1949



K[ D QR (s u® ()] e s vt e 1. 5)
Let v(t) = u® (t)e ™, we have from (15)

V() < BO+ [ TEWMENVE) + [ oW, ME)VE)

[ W (NI 1] ds, vt l, (o

Let Z, (t) denote the function on the right-hand side of (16), which is a positive

and nondecreasing function on | . From (16), we have
v(t) < z,(t), B(t) < z,(t), Vt e I . a7
Differentiating z, (t) with respect to t, using (17) we have

20 =B+ F Ow (OO + [ Fow, M@)IVE)
+I[ P (W, ()T Td ]

<B') + f ()W, (2,(0)2, (1), Vi e, (18)
where

2,0) = 2,0 +[[ W, @ @)z ()

S IGIAAG) E RS T
Obviously,
Z,(t)=2z,(t,), z,(t) < z,(t), Vtel. (19)

since , <, <0,,d,/0; >1. Using the inequality (6) in Lemma 2 with
n=2,a=q,/q,, we obtain that

A 9 4 .
28 =2% 254 ()+2% [ Few, @ O)N(0)

R (IGINAGERR @)

From (18) and (20), we have
@ 4 %4 % _4

gizfl‘l(t)z;(t):q—zqu 20 Oz +2% FOW,(z0)z)

1 1

S GINAG B
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<9907 57 @0+ T O (2 1))

G2y

2% GOW, (2, Oz,
<[ MWy (2,(£)de1/™]
=2 g0 20 (B0 + T ()W, (2,1)2,1)

1
Q21

+2% gtw, (z,(1))z; 1), (21)
forall t e |, where z,(t) = z, (t) +[J.t h (&)W, (2, (£))dE]%/% . Obviously,

Z, (t) < z,(t). Using the inequality (6) with n =2, & = q,/0, > 1, we obtain
that

O _ Sy =
280 ) =2% 2,2 (2% [ REW(2,@)Mevtel. @2

From (21) and (22), we have
L8 <) q Gy %y 9y~
] 2z (O)z5(t)=—2% 2" (D)z;(1) +2% h(t)w,(z,(1))
2 2
93 QZ 2 93 a

<% pu"a 2 (0(B/(1) + F ()W (2, (D)2, 1)
i q q 9 93 4z
e % pua 70 OF w2 0)2 O
By~
+2% h(t)w;(z,(t)), (23)
forall t € I. From (23) we have
%,% 93.% 5 ~
() <2% % B(O)+2% ()W, (25(0)25 (1)
LT S w1 )2  +2% hOw,(z(0)

a,
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=C0)+ T (2, )2+ TOW, (2: )z, * 0
LR OW, (2, (1), Yt e l. 4
From (24) we have

v(t) < QHOHOHO[Q, (@, C ) + [ A(s)ds

+ [ G(s)ds]+ [ T(s)dshy} vt e[ty T,], (25)

In view of V(t) = u® (t)e™ ™, we can obtain (7).

3. Summary

In this paper, we establish a class of new nonlinear weakly singular integral
inequality, which consists of iterated integral, and weakly singular integral
kernel be involved in each layer. Under several practical assumptions, the
inequality is solved by adopting novel analysis techniques, such as: change of
variable, amplification method, differential and integration, inverse function, and
the dialectical relationship between constants and variables, and explicit bounds
for the unknown functions are given clearly.
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