

An Effective Approach of Points-To Analysis

Zhang Yuping1, a, Deng Zhaori 1, Zhang Xiaoning1 and Ma Yan1
1College Of Information Mechanical And Electrical Engineering,
Shanghai Normal University, Shanghai, China
ayp_zhang@shnu.edu.cn

Abstract.

Aim at the potential that the time efficiency of the technology of Cycle elimination
for invocation graph-based context-sensitive pointer analysis can be improved.
Through using wave and deep propagation method, which is the state-of-the-art
techniques of Inclusion Based Pointer Analysis on-line optimization Technology,
to optimize the technology of cycle elimination for invocation graph-based
context-sensitive pointer analysis, and then puts forward a context-sensitive wave
and deep propagation algorithm. First, introduces the definition and initialization
of new constraint graph; secondly, through an example to describe the
context-sensitive wave and deep propagation, which can accurately and efficiently
realize context-sensitive pointer analysis; finally, use the CIL tool for experiment,
the experimental results show that these new algorithms save about 9s or 10s when
the original technology and the new algorithm are all analyzing the same large
scale program.
 Keywords: Optimization, Invocation, Context-sensitive process, Points-to
analysis, Cycle elimination, Call graph

Introduction

Pointer analysis refers to the analysis of program to approximately calculate
the point to the set of the pointer expression. Based on analysis method containing
a pointer[1] is a kind of important context-free pointer analysis method (merge all
invocations).Context-sensitive pointer analysis is used to distinguish between
different invocation points of the same functions. In recent study, for example,
Binary Decision Diagram[2] can well handle highly context-sensitive pointer
analysis, but in the further scalability analysis[3] it did not perform predefined
constraints. However, Woongsik Choi etc[4]. puts forward the technology of
Cycle elimination for invocation graph-based context-sensitive pointer analysis
which has both high context-sensitivity and good scalability, whose time analysis
efficiency still has potential for improvement. Fortunately, there have appeared a
lot of the optimization techniques[5] based on analysis method containing a
pointer during the past 20 years. Following Fahndrichng[5], Pearce[8,9], Pereira[6]
successively puts forward some cycle detection and elimination technology of
constraint graph which have their respective advantages and disadvantages .Wave
Propagation(referred to WP)and Deep Propagation(referred to DP) of Pereira[6]

International Symposium on Computers & Informatics (ISCI 2015)

© 2015. The authors - Published by Atlantis Press 2038

are the most outstanding one, because it can greatly improve the time and space
efficiency analysis. Therefore, in this paper, by using the WP and DP algorithm to
optimize the cycle elimination technology to respectively proposed
context-sensitive WP and DP algorithm, which can accurately express and realize
the cycle elimination technique more effectively. Finally, in the CIL[7], using
OCaml language implementation analysis, and analyzing the six program on the
line of 20,000 ~ 290,000 prove that the time efficiency of the new algorithm is
better than the Cycle elimination technology.

1 Constraint graph and its initialization

1.1 A new definition of constraint graph

Context-sensitivity is combined with the new constraint graph. First of all,
each node has the attribute of cs (true: the corresponding variable of the node is
context-sensitive, or is context-free) and ct (for the context-free variables, the
value is the context set, stating that another variable point to the variable in the set).
For example, a ρ{b}, if a is context-sensitive, b is context-free, there will be node
a(cs is true, ct is null) and b (cs stand foe false, ct stand for ρ) in the graph,
indicating that a point to b in the context of ρ. The circle of context-free variable is
gray, otherwise is white.

In addition, side is divided into three categories: common sides (solid arrow);
calling sides(solid arrow ,standing for function calls) namely, the side of
arguments point to the formal parameters ;and return sides (dotted arrow, standing
for call returns), namely, the return variables point to the side of the variables
receiving its value. The identifier of side E(v,w,γ,ρ) is ρ(when ρ is ┬,there will be
no identifier) .v, w stand for respectively side head and tail node.γ stands for
category; its value is 1,2,3,which respectively means common sides, calling sides
and return sides. When the value of γ equals to 1, ρis the representative of context
set, indicating variable w in the ρ includes when the value of γ equals to 2, ρis the
numberm, indicating this side is calling the function of point m, and V, w
respectively stand for arguments and formal parameters. When the value of γ
equals to 3, ρis the number m, indicating call returns of point m, and V, w
respectively stand for return variable and variable receiving value. For example , a
ρb , refer to common side(b,a,1,ρ); a f(b)1 refer to calling side (b, ,2,ι) and return
side (,a,3,ι)。
1.2 Initializes the constraint graph

If a is a local or global or stacks variable addressed, then it is context-free,
otherwise it is context-sensitive. Assuming that the context-free pointer analysis
has already obtained the function pointer and function calls graph[4],the variable
has no duplication of name.

Both initial constraint concentration value and the context identifier of each
variable constraint is ┬ .Every calling point ι corresponds context ρι=(ι,┬,
┴).Point 1 and point 2 is context ρ1=(1,┬, ┴) and ρ2=(2,┬, ┴) respectively.
Context-sensitive: a,b,c,d,e,s,t,v,w; context-free : p,q,x,y.

2039

First of all, focus on building a node having the same name for every variable,
initialize the cs attribute of every node, then process value constraints, assign the
variable of the right side corresponding value. For example, a┬b, the ct of b equal
to ┬.Then, add one side to graph for every variable constrains to initial the
attribute of this side. For example, c ┬ e, add (e,c,1,┬).At last, add the function
calling constraints. For example, v f(a,b)1, add side (a,s,2,1), (b,t,2,1) and
(t,v,3,1).

Focus point, for example, xρ, the right subscript is the cs attribute of x. If it is ┬,
node x will be represented as x.

2 Wave propagation considering the context sensitivity

2.1 The new frame of wave propagation

The new WP is the while loop from Algorithm1, with its condition always true.
The input is initial constraint graph G=(V,E), the output is the mapping of every
node to the point set. First of all, calling Algorithm2 in the graph to explore and
merge ring; then calling the Algorithm4 for different transmission[5]. In the end,
calling Algorithm5 to process complex constraints to add new side.

2.2 Cycle detection and elimination

Algorithm3 combined detection loop method in[4]: Detect cycle of common
side, only when the value of ρ equal to ┬ (condition of 2nd row). Detect the cycle
consisting of (e,c,1,┬)(c,e,1,┬), and merge c, e into c, then, the point set of c, e is
q┬. There is at least one context-free node in the cycle, then set all the nodes in the
cycle to false. All of the point set of the nodes are the combination of point set of
the junction point source. Chose one node as the representation.

2.3 Difference propagation

Algorithm4 by combining the context-sensitive constraint solve [trans1],
[trans2], [param1], [param2], [ret1], [ret 2] and [ret3] of the rules to the algorithm
4 of literature[6].

2.4 deal with complex constraints

Algorithm5 (deal with complex constraints except function call) combines
load1, load2, ret1, ret2, ret3[4].

3 Deep propagation considering context sensitivity

3.1 The new frame of deep propagation

Just like Algorithm6, the input of the new DP is a initialized original constraint

graph; the output is the mapping of each node to the point set. Explore and merge

the cycle (Algorithm2) at first, then execute difference propagation again. In the

2040

end, execute repeated circulation to deal with complex constraints until the point

set of the entire node does not change after calling Algorithm7.

3.2 Cycle detection and elimination

The method of the cycle detected and eliminated is the same as the

context-sensitive wave propagation. The result of the cycle detected and

eliminated is shown in Figure1(b).

3.3 Difference propagation

The method of difference propagation is the same as the wave propagation. As

shown in Algorithm4, Figure1(c) can be made through difference propagation.

The new Algorithm6 can be made by combing [load1], [load2], [ret1], [ret2],

[ret3][4] to literature [6], used to deal with complex constrains. Note: there is no

need dealing with functions to call a f(b)1 .

For example, after dealing with complex constraints, Figure1(c) will turn into

Figure1(d). According to Figure1(c) , the point of s is { pρ1, qρ2}. As for pρ1,

because the cs value of t is true and

Algorithm7 The Deep Propagation Routine. Input: the point-to set Pdif that

must be propagated, the n node v with the edge (t,v, γ, ρ) and that is been visited

and the stop point s. Output: true if stop point s is reachable from v, and false

otherwise. Require: Pcur(r) Pcur(w) if w is reachable from v.Ensure: Pcur(r)

Pcur(w) if w is reachable from v.

side(t,p,1,ρ1) is not in the Figure1(c), deal with it, and add this side to the

graph (it is no need to execute difference propagation on this new side). Then, take

side (t,p,1, ρ1) as parameter from p , and take r as the stop node for deep

propagation (call Algorithm7). As a result, the point set of p is {x┬} and be

marked black. Namely, p cannot reach to r (the ρ attribute of all of the sides is ┬ in

the path reached to).

2041

Figure 1 the example of analysis

Similarly, as for qρ2 , the new side (t,q,1, ρ2) is added to the graph, the point

set of q is {y┬}, marked as black, as shown in Figure1(d). Because there is no new

side added to the latest figure after dealing with *s t and executing the repeat loop

of Algorithm6, Algorithm1 terminates, which means the analysis finished.

4 Experiments

The new algorithm makes use of WP and DP to optimize the Cycle elimination

technology, but the former is aimed at improving the efficiency of analysis and has

no effect on the accuracy of the technology. So the time efficiency is focused on

this experiment. The experiment adopts the experimental methods of literature[3],

2042

implemented the analysis with Ocaml language in CIL[7] , borrowing the

hash-consing of BuBDDy, conducting an experiment with a computer (CPU: Inter

i7,3.91GHz,Memory: 12GB).The six programs in table 1 are analyzed six times to

obtain the average time of the analysis, verifying the time and the Cycle

elimination efficiency of the two new algorithm. The result of the experiment is

shown in table 2, listing the average value and range of six analyses.

The list of row in table 1 is the preprocessing lines of code. The list of variable

1 is the number of the context-sensitive variable. The list of variable 2 is all

possible contexts in the program.

Table 1 the list of experimental source program

P
rogr
am

V
ersio

n

L
inage

V
ariabl
e 1

V
ariabl
e 2

C
ontext

m
ake

3
.81

2
4,889

1
0,499

2
028

5
×106

t
ar

1
.20

5
6,105

1
5,209

2
624

3
×107

s
qlite

3
.6.16

6
5,235

3
8,074

3
640

6
×109

p
ovra

y

3
.1g

8
1,941

2
6,896

1
891

2
×1010

p
ytho

n

2
.0.1

1
63,82

4

5
2,092

8
206

1
×1011

n
ame

d

9
.4.3

2
95,76

6

8
7,476

1
4,979

2
×108

2043

Program
Cycle

elimination
technique(s)

Average value (s)

The new
WP

algorithm

The new
DP
algorithm

T
a

make 0.2 0.10 0.19

tar 1.3 0.88 0.8

sqlite 33.4 32.4 31.7

povray 9.3 8.32 8.2

python 233.9 225.4 224.6

named 484.2 475.4 474.3 4

Table 2 the time of analysis
What is listed in table 2 is the time comparison that the two new algorithms

spend on the analysis of the same source program. According to table 2, because

Cycle elimination technique adopts the wave propagation and deep propagation of

online optimal technique, and our new algorithm performs more excellently in the

terms of time efficiency.

5 Conclusion

This article puts forward two new algorithms by combing the method of WP

and DP: the former optimizes the latter. The result of the experiment states that the

new algorithm improves the time efficiency and Cycle elimination efficiency of

Cycle elimination technique. However, this new algorithm is not applied to the

specific problems, such as the detection of null pointer and so on. In the future, the

application of this algorithm in the static analysis of the program will be realized.

Acknowledgements

2044

This work was financially supported by Research and Innovation Fund Project of
Shanghai Normal University (SK201413) and the National Natural Science
Foundation (61373004).

Reference

[1] Andersen L O, Program analysis and specialization for the C programming
language[D]. Copenhagen, University of Copenhagen, 1994

[2] Bryant R.E, Graph-based algorithms for boolean function manipulation[J].
IEEE Transactions on Computers, 1986, 35 (8):677–691

[3] Avots D, Dalton M, Livshits V.B, Lam M.S, Improving software security
with a C pointer analysis[C]// Proc . of the International Conference on Software
Engineering, St. Louis, MO, USA, 2005:332–341

[4] Woongsik Choi, Kwang-Moo Choe, Cycle elimination for invocation
graph-based context-sensitive pointer analysis[J]. Information and Software
Technology, 2011, 53(8):818-833

[5] Fahndrich M, Foster J S, Su Z, Aiken A, Partial online cycle elimination in
inclusion constraint graphs[J]. ACM SIGPLAN Notices, 1998, 33(5): 85-96

[6] Pereira F M Q, Berlin D, Wave Propagation and Deep Propagation for
Pointer Analysis analysis[C]//Proc . of the 2009 International Symposium on
Code Generation and Optimization. Washington, DC, USA, 2009: 126-135

[7] Necula G C, McPeak S, Rahul S P, Weimer W, CIL: Intermediate language
and tools for analysis and transformation of C programs[J]. Lecture Notes in
Computer Science, 2002, 2304:209-265

2045

	Zhang YupingP1, aP, Deng Zhaori P1P, Zhang XiaoningP1P and Ma YanP1P
	1College Of Information Mechanical And Electrical Engineering, Shanghai Normal University, Shanghai, China
	PaPyp_zhang@shnu.edu.cn
	Keywords: Optimization, Invocation, Context-sensitive process, Points-to analysis, Cycle elimination, Call graph

