Precise large deviation of the surplus process in a perturbed model

Yinghua Dong

College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China

dongyinghua1@163.com

Abstract.

In this paper, we consider a perturbed model in which $\{X_i, i=1,2,\cdots\}$ are extended negatively dependent random variables with consistently varying tails, $\{Y_k, k=1,2,\cdots\}$ are idependent, identically distributed random variables. We give precise large deviation of the surplus process .

Keywords: Precise large deviation, the surplus process, extended negative dependence, quasi-renewal process.

1. Introduction

We consider a model in which $\{X_i,i=1,2,\cdots\}$ form a sequence of nonnegative extended negative dependent (END) random variables with common distribution F; N(t) denotes the appearance number of $\{X_i,i=1,2,\cdots\}$ in [0,t], and $\{N(t),t\geq 0\}$ is a general counting process. We assume $E(N(t))=\Lambda(t)<\infty$ for all $t\geq 0$, and as $t\to\infty$, $\Lambda(t)\to\infty$. The aggregate amount up to t can be given by

$$S(t) = \sum_{i=1}^{N(t)} X_i, \qquad t \ge 0.$$

 $\{Y_k, k=1,2,\cdots\}$ constitute another sequence of independent, identically distributed (i.i.d) nonnegative random variables. Suppose that their inter-arrival time $\{\theta_i, i=1,2,\cdots\}$ forms a sequence of identically distributed LND random

variables. Let $T_k = \sum_{i=1}^k \theta_i$ denote the arrival time of Y_k . Then we get a quasi-renewal process $M(t) = \sup\{n \geq 1: T_n \leq t\}$, $t \geq 0$. Let $E(\theta_1) = 1/\lambda_1$. Then $M(t)/\lambda_1 t \longrightarrow 1$, a.e.

Let u>0 denote the initial reserve. $\{\sigma W(t), t\geq 0\}$ denotes a perturb process, where σ is referred to as a diffusion coefficient, and $\{W(t), t\geq 0\}$ is a standard Wiener process. Let d and -d denote the upper and low bounds of $\{W(t), t\geq 0\}$, respectively. The reserve process is presented by

$$R(t) = u + \sum_{k=1}^{M(t)} Y_k - \sum_{i=1}^{N(t)} X_i + \sigma W(t) I_{[-d,d]}(W(t)), \qquad t \ge 0.$$

The surplus process can be denoted by

$$Z(t) = \sum_{i=1}^{N(t)} X_i - \sum_{k=1}^{M(t)} Y_k - \sigma W(t) I_{[-d,d]}(W(t)), \qquad t \ge 0.$$

(1)

we assume $\{X_i, i=1,2,\cdots\}$, $\{Y_k, k=1,2,\cdots\}$, $\{N(t), t\geq 0\}$ and $\{M(t), t\geq 0\}$ are mutually independent. [1] showed precise large deviation of non-random sum, while [2] presented precise large deviation of $\{S(t), t\geq 0\}$. In the present paper, we obtain precise large deviation of the surplus process $\{Z(t), t\geq 0\}$ in the above model.

2. Preliminaries

The definition of END structure was introduced by [1].

Definition 1. We call random variables $\{X_i, i=1,2,\cdots\}$ END if there is M>0 such that both

$$P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\} \le MP\{X_1 \le x_1\}P\{X_2 \le x_2\} \cdots P\{X_n \le x_n\}$$

and

$$\begin{split} P\{X_1 > x_1, X_2 > x_2, \cdots, X_n > x_n\} & \leq MP\{X_1 > x_1\}P\{X_2 > x_2\}\cdots P\{X_n > x_n\} \\ \text{hold for each } n = 1, 2, \cdots, \text{ and all } x_1, \cdots x_n. \text{ For } M = 1, \text{ if (2) holds, we} \\ \text{call } \{X_i, i = 1, 2, \cdots\} \text{ LND.} \end{split}$$

In the following, we introduce some related heavy-tailed distribution class, which can be found in [3] and [4]. For convenience, denote $\overline{F}(x) = 1 - F(x) = P(X > x)$.

A distribution F on $[0, \infty)$ is said to belong to the long-tailed class and write $F \in L$, if

$$\overline{F}(x-y) \sim \overline{F}(x)$$
, for any $y \in (-\infty, \infty)$.

In addition, we say that F is said to belong to the dominated variation class and written as $F \in D$, if

$$\overline{F}(xy) = O(1)\overline{F}(x)$$
, for all $0 < y < 1$.

Denote the upper Matuszewska index of F by J_F^+ . If $F \in D$, then $0 < J_F^+ \le \infty$.

The consistent variation class $\ C$ is smaller than the class $\ D$. We call $\ F \in C$, if

$$\lim_{y \downarrow 1} \liminf_{x \downarrow \infty} \frac{\overline{F}(xy)}{\overline{F}(x)} = 1.$$

It is well known that C belongs to $D \cap L$.

In this paper, N(t) satisfies the following assumption.

Assumption 1: For some $p > J_F^+$,

$$EN(t)^{p} I(N(t) > (1+\delta)\Lambda(t)) = O(1)\Lambda(t)$$

holds for all $\delta > 0$.

According to Theorem 3.1 of [2], we can get the following lemma.

Lemma 1. Let $\{X_i, i=1,2,\cdots\}$ be END. In addition to Assumption 1, suppose that $F\in C$, $E(X_1)=\mu>0$. Then, for any fixed $\gamma>0$, it holds uniformly for all $x\geq \gamma\Lambda(t)$ that

$$P(S(t) - \mu \Lambda(t) > x) \sim \Lambda(t) \overline{F}(x), \qquad t \to \infty$$

By the definition of the consistent variation class C, we easily get the following lemma.

Lemma 2. If $F \in C$, then

$$\lim_{x\to\infty}\frac{\overline{F}(x+o(1)x)}{\overline{F}(x)}=1.$$

The following lemma is due to [5]

Lemma 3. For a distribution F on $[0, \infty)$, if $F \in D$, then for any $p > J_F^+$, there exists some positive number C_1 and x_0 such that

$$\frac{\overline{F}(xy)}{\overline{F}(x)} \le C_1 y^{-p}, \quad \text{for all } x \ge xy \ge x_0.$$

The following is from [2].

Lemma 4. For a qusi-renewal process $\{M(t), t \geq 0\}$, the generic inter-renewal distance θ has distribution G and expectation $1/\lambda_1 < \infty$. If $G(\infty) = 1$, then

$$\lim_{t\to\infty}\frac{\lambda_1(t)}{t}=\lambda_1,$$
 a.e.

holds.

3. Main result

Theorem. Let $\{X_i, i=1,2,\cdots\}$ be END. In addition to Assumption 1, suppose that $F \in C$, $E(X_1) = \mu > 0$. Then for any fixed $\gamma > 0$, it holds uniformly for all $x \geq \gamma \Lambda(t) \geq \lambda_1 t$ satisfying $\gamma \geq E(Y_1)$ that

$$P(Z(t) - \mu \Lambda(t) > x) \sim \Lambda(t) \overline{F}(x), \quad t \to \infty.$$
 (3)

Proof. For convenience, write $A(t) = \sum_{i=1}^{M(t)} Y_i + \sigma W(t) I_{[-d,d]}(\sigma W(t))$.

Since
$$E\left(\sum_{k=1}^{M(t)} Y_k\right) = E(Y_1)\lambda_1(t)$$
 and $E(W(t)I_{[-d,d]}(\sigma W(t))) = 0$,

We get $E(A(t)) = E(Y_1)\lambda_1(t)$. According to Chen et al. (2011), we have

$$\frac{1}{E(Y_1)\lambda_1 t} \sum_{k=1}^{M(t)} Y_k = \frac{1}{M(t)} \sum_{k=1}^{M(t)} Y_k \cdot \frac{M(t)}{\lambda_1 t} \longrightarrow 1, \quad \text{a.e.}$$

In addition, it is clear that

$$\lim_{t\to\infty} \frac{W(t)I_{[-d,d]}(W(t))}{t} = 0,$$
 a.e.

It follows from the two equalities above that

$$\frac{A(t) - E(Y_1)\lambda_1(t)}{E(Y_1)\lambda_1 t} \longrightarrow 0, \quad \text{a.e.}$$

Hence, there is a positive function $\mathcal{E}(t)$ such that as $t\to\infty$, $\mathcal{E}(t)\to0$ and

$$P(|A(t) - E(Y_1)\lambda_1(t)| > \varepsilon(t)E(Y_1)\lambda_1t) = o(1).$$

Next we discuss the large deviation of the surplus process.

$$\begin{split} &P(Z(t) - EZ(t) > x) \\ &= P\big(S(t) - A(t) - ES(t) + E(Y_1)\lambda_1(t) > x\big) \\ &= \int_{|y - E(Y_1)\lambda_1(t)| \le \varepsilon(t)E(Y_1)\lambda_1t} P(S(t) - ES(t) > x - E(Y_1) \cdot \lambda_1(t) + y) P(A(t) \in dy) \end{split}$$

$$+ \int_{y-E(Y_1)\lambda_1(t) < -\varepsilon(t)E(Y_1)\lambda_1t} P(S(t) - ES(t) > x - E(Y_1) \cdot \lambda_1(t) + y) P(A(t) \in dy)$$

$$+ \int_{y-E(Y_1)\lambda_1(t) > \varepsilon(t)E(Y_1)\lambda_1t} P(S(t) - ES(t) > x - E(Y_1) \cdot \lambda_1(t) + y) P(A(t) \in dy)$$

$$= I_1(t) + I_2(t) + I_3(t). \tag{4}$$

First of all, we deal with $I_1(t)$. For $x \ge \gamma \Lambda(t) \ge \lambda_1 t$, we have

$$\frac{t}{x} \le \frac{1}{\lambda_1}$$
.

When

$$|y - E(Y_1) \cdot \lambda_1(t)| \le \varepsilon(t) E(Y_1) \lambda_1 t$$

$$x - E(Y_1)\lambda_1(t) + y = x + o(1)t = x + o(1)x$$
.

By Lemma 1 and Lemma 2, it holds uniformly all $x \ge \gamma \Lambda(t)$,

$$\begin{split} I_1(t) \\ &= \int_{|y-E(Y_1)\lambda_1(t)| \leq \varepsilon(t)E(Y_1)\lambda_1t} P(S(t) - ES(t) > x - E(Y_1) \cdot \lambda_1(t) + y) P(A(t) \in dy) \end{split}$$

$$\sim \int_{|y-E(Y_1)\lambda_1(t)| \leq \varepsilon(t)E(Y_1)\lambda_1 t} \Lambda(t) \overline{F}(x - E(Y_1) \cdot \lambda_1(t) + y) P(A(t) \in dy)
= \Lambda(t) \overline{F}(x) \int_{|y-E(Y_1)\lambda_1(t)| \leq \varepsilon(t)E(Y_1)\lambda_1 t} \frac{\overline{F}(x + o(1)x)}{\overline{F}(x)} P(A(t) \in dy)
\sim \Lambda(t) \overline{F}(x).$$
(5)

Next we discuss $I_2(t)$. By Lemma 3, there is some positive number D_2 such that it holds uniformly for all $x \geq \gamma \Lambda(t)$ satisfying $\gamma > E(Y_1)$,

$$I_{2}(t) = \int_{y-E(Y_{1})\lambda_{1}(t) < -\varepsilon(t)E(Y_{1})\lambda_{1}t} P(S(t) - ES(t) > x - E(Y_{1})\lambda_{1}(t) + y) P(A(t) \in dy)$$

$$\leq \int_{y-E(Y_1)\lambda_1(t)<-\varepsilon(t)E(Y_1)\lambda_1t} P(S(t)-ES(t)>x-E(Y_1)\cdot\lambda_1(t)) P(A(t)\in dy)$$

$$\sim \Lambda(t)\overline{F}(x) \int_{y-E(Y_1)\lambda_1(t) < -\varepsilon(t)E(Y_1)\lambda_1 t} \frac{\overline{F}(x-EY_1\lambda_1(t))}{\overline{F}(x)} P(A(t) \in dy)
\leq D_2 \Lambda(t)\overline{F}(x) P(A(t) - E(Y_1) \cdot \lambda_1(t) < -\varepsilon(t)E(Y_1)\lambda_1 t)
= o(1)\Lambda(t)\overline{F}(x).$$
(6)

Now we verify the fourth step. As t is large enough and $x \ge \gamma \Lambda(t)$,

$$x - E(Y_1)\Lambda(t) = x \left(1 - \frac{E(Y_1) \cdot \Lambda(t)}{x}\right) \ge x \left(1 - \frac{E(Y_1)}{\gamma}\right).$$

Since $C \subset D$,

$$\limsup_{x \to \infty} \frac{\overline{F}\left(x\left(1 - \frac{E(Y_1)}{\gamma}\right)\right)}{\overline{F}(x)} < \infty.$$

Hence, as $\,t\,$ is enough large, there is some positive number $\,D_2\,$ such that

$$\frac{\overline{F}(x-E(Y_1)\Lambda(t))}{\overline{F}(x)} \le D_2.$$

Finally, we deal with $\ I_3(t)$. For any fixed $\ \gamma>0$, it holds uniformly for all $\ x\geq\gamma\Lambda(t)$ that

$$\begin{split} I_3(t) &= \int_{y-E(Y_1)\lambda_1(t)>\varepsilon(t)E(Y_1)\lambda_1t} P(S(t)-ES(t)>x-E(Y_1)\cdot\lambda_1(t)+y) P(A(t)\in dy) \\ &\leq \int_{y-E(Y_1)\lambda_1(t)>\varepsilon(t)E(Y_1)\lambda_1t} P(S(t)-ES(t)>x) P(A(t)\in dy) \\ &\sim \Lambda(t)\overline{F}(x) P(A(t)-E(Y_1)\lambda_1(t)>\varepsilon(t)E(Y_1)\lambda_1(t)>\varepsilon(t)E(Y_1)\lambda_1(t) \\ &= o(1)\Lambda(t)\overline{F}(x) \,. \end{split}$$

(7)

According to (4)-(7), we obtain (3). This ends the proof of the theorem.

Reference:

[1] Y. Liu, Precise large deviations for dependent random variables with heavy tails. Stat.

Probab.Lett., 47, (2004) 311-319.

[2] Y. Chen, K. C. Yuen and K. W. Ng, Precise large deviations of random sums in the presence of

negatively dependence and consistent variation. Methodol. Comput. Appl. Probab. 13 (2011) 821-833.

- [3] N. H. Bingham, C. M. Glodie, and J. L. Teugels, Regular Variation, Cambridge University
 - Press. (1987).
- [4] D. B. H. Cline and Samorodnitsky G, Subexponentiality of the product of independent random variables, Stoch. Proc. Appl. 49, (1994) 75-98.
- [5] Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stoch. Proc. Appl. 108, (2003) 299-325.