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Abstract 

In this paper, according to the characteristics of ill-conditioned linear equations. 
An improved Wilkinson algorithm(IWA) for solving ill-conditioned linear 
equations is proposed. An amendment factor is introduced to reduce the condition 
number of the coefficient matrix of ill-conditioned linear equations. An automatic 
step size is adopted to estimate the local error and change the step size 
correspondingly. The numerical results demonstrate that this new iterative 
algorithm is superior to other methods such as the amended conjugate gradient. 
The new algorithm is more applicable for solving ill-conditioned linear equations.  
Keywords: Wilkinson algorithm; ill-conditioned linear equations; step size; 
amended conjugate gradient 

1. Introduction 

In practical science and engineering applications, many problems arise in solving 
linear equations using approaches such as spline interpolation, finite differences 
for solving partial differential equations, finite element method, and the 
boundary element method. Over the years, many researchers have carried out 
extensive and detailed research into this problem and obtained many valuable 
results [1–6]. Because of various error forms, such as model errors, measurement 
errors and computational rounding errors, there is a certain degree of variation in 
the coefficient matrix and non-homogeneous information is obtained. As 
different methods use different iterative mechanisms, the error in the solving 
process accumulates to different degrees and leads to different approximations of 
the solution for different methods. In particular, for ill-conditioned linear 
equations, many of the existing algorithms do not work well. Based on 
Wilkinson’s iterative algorithm and the Wu and Fang improved algorithm, a new 
algorithm with automatic step size is proposed here. An amendment factor is 
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introduced to change the condition number of linear equations. By solving 
general linear equations of good condition, as well as high-order ill-conditioned 
Hilbert linear equations, numerical experiments demonstrate that the new 
algorithm is practical and more effective.  

2. PROBLEM FOR EMULATION  

We consider the linear equations defined by 
BAX =                                                                        

(1) 
Equation (1) can be also written as 
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We define ( )

VVV AAAcond 1−= Cond( A)vas thev-condition number of 

matrix A. Especially, when v=2, since 
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(6) 
Especially, if A=1, cond(A)2=1; if A is a singular matrix, Cond(A)2= ∞. 

3. Improved Wilkinson algorithm (IWA) 

In 1971, Wilkinson proposed the following iterative algorithm based on the 
numerical solution of ordinary differential equations. Assume that the initial 
vector is x0=0, then its iterative formula is:  

,...2,1,0=−= nAxbA nZn                                                     
(7) 
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In fact, Wilkinson’s iterative algorithm is a Euler method with fixed step 
Zn≡1 for solving ordinary differential equations: 
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(9) 
However, the error for an explicit Euler method with a fixed step may still 

be great when solving some equations, and the iterative convergence can also be 
very slow. Cholesky decomposition can be used for each step of Wilkinson’s 
iterative algorithm. For a large-scale matrix, this not only increases the amount 
of computation, but also decreases the precision. In particular, for high-order 
ill-conditioned linear equations, we usually cannot obtain a satisfactory answer, 
no matter how many steps are set. Wu and Fang [1] proposed an improved 
algorithm with automatic step size using a Euler formula and a trapezoid formula 
for solving linear ordinary differential equations. The main process of their 
improved algorithm is as follows. First, for linear ordinary differential Eq. (9), 
the following formula can be obtained using an explicit Euler method: 
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(10) 
And the following formula is obtained using the trapezoid formula: 
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(11) 
Wu and Fang proved the convergence of the iteration. Using both Wilkinson’s 

iterative algorithm and the Wu and Fang improved algorithm, Zn is obtained by 
solving linear equations of the form nn AxbAZ −= in each step of the 
iteration. However, this is very difficult for high-order ill-conditioned linear 
equations and the error is also great, and both iterative algorithms fail for 
high-order Hilbert linear equations. In general, an n-order Hilbert linear equation 
takes the form 
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.Obviously, the solution accuracy of Eq. (12) is 
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x=[1,2,…,n]T. If we let n=100 and assume the upper bound of the iterative number 
is 10000, we can use the improved algorithm proposed by Wu and Fang 
combined with Cholesky decomposition [7] or the amended conjugate gradient 
method[8] to solve Eq. (12). The results shown in Table 1 demonstrate that both 
algorithms are not suitable for solving high-order ill-conditioned Hilbert linear 
equations. 
 
 

Table 1 Comparison of the solution accuracy for the Wu and Fang 
improved algorithm 

 
n Accuracy of the Wu and Fang solution 

With Cholesky 
decomposition 

With amended conjugate 
gradient 

1 0.999996484266 1.00240968371554 
2 2.000459468168 1.944307180417133 
3 2.985326227504 3.30494636184830 
4 4.195908810628 3.450279752535835 
5 –3.01003688033 5.12481410190494 

… … … 
99 97.757269770480 98.13845741566571100 
100 93.246322198282 98.8892193560027 

 

3. The analysis of simulation 

Experimental selection of the 3 equations, the equation groups is used in 
literature [9]. 
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In order to test the algorithm of the paper efficiency, in this paper, the algorithm 
of the paper compares to the algorithm of literature [10]. It can be seen from 
Figure 1, with the quantum-behaved particle swarm optimization (QBPSO) 
being premature and waggle-ness in the later stage of evolution, it generates 
large errors of numerical solution for solving ill-conditioned linear equation 
group. But the result of numerical solution by improved Wilkinson algorithm 
(IWA) is improved in comparison with quantum-behaved particle swarm 
optimization (QBPSO). Tests on the nuclear magnetic resonance oil well logging 
system of equations prove that the improved Wilkinson algorithm (IWA) 
proposed in this paper is an effective algorithm.  

 
Figure 1 the algorithm of the paper compares to the algorithm of literature 

4 Conclusions 

This paper proposes an improved Wilkinson algorithm (IWA). The improved 
Wilkinson algorithm (IWA) is applied to solve ill-conditioned linear equations, 
the performance have been improved obviously. Experiments show that: the 
algorithm is feasible and effective for solving nonlinear equations. 
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