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Abstract 

In this paper, we applied the Hilbert–Huang transform method to improve the 
accuracy of nonlinear deformation predictions. We propose a nonlinear model for 
prediction based on the multi-scale characteristics of a signal, and used the 
empirical mode decomposition (EMD) method to decompose the signal. We first 
applied our method to a simulation of the Lorenz system. Our results show that 
the EMDs have smaller largest Lyapunov indices than the original signal. We can 
use this to determine the maximum prediction time for a nonlinear signal. We 
then constructed a new model based on EMD signals. The results of our 
experiment demonstrated that this prediction accuracy is perfect. Finally, we 
used the characteristics of the EMD signals to build the EMD-LLSVM 
prediction model. Our results show that this model is more accurate than 
traditional models. 
Keywords: deformation; Hilbert–Huang transform; EMD; multi-scale 
characteristics; prediction model 

Introduction 

A deformation of a structure may be affected by many different factors in 
different ways. These factors include precipitation, structural vibrations, air 
pressure, and groundwater, loads. Therefore, the inherent law of dynamic 
deformation is often extremely complex. Recent research confirmed that most 
deformable bodies (for example, landslides, high-rise buildings, dams, old goaf 
ground, and coal mines) have obvious nonlinear chaos characteristics. The 
uncertainties and complexities of deformations mean that we must use nonlinear 
and methods to predict their behavior. Furthermore, .some nonlinear methods 
have preliminary applications such as chaos, fractal, and neural networks[1~5]. 
Additionally, the development of three dimensional technologies have led to a 
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variety of real-time, continuous, and dynamic monitoring methods. At the same 
time, these developments have produced rich, multi-source, and multi-scale 
deformation data that may be used in a modified analysis. Effective tools for 
analyzing these data are very important to encourage analyses of engineering 
deformations and future development forecasts. In this article, we used a 
multi-scale analysis of the multi-scale characteristics of a signal, applying the 
Hilbert–Huang transform (HHT) and chaos support vector machine (SVM) 
methods. We studied issues including the chaotic nonlinear deformation of 
characteristic information, and time-scale extension. Additionally, we established 
a new prediction model. 

Empirical Mode Decomposition 

The HHT analysis method was introduction by Huang et al. (1998) for nonlinear 
and nonstationary time series. It is mainly based on empirical mode 
decomposition (EMD) and the Hilbert spectrum. EMD is used to decompose the 
original time series into different frequency components, from high-frequency to 
low-frequency. These components are called intrinsic mode functions (IMFs). 
Compared with time-series analysis methods (i.e., the Fourier spectral and 
wavelet analysis methods), this technique can perfectly handle nonlinear and 
nonstationary signals, and is intuitive, direct, empirical, and adaptive. This 
method has been shown to be remarkably effective. The IMFs are smooth 
narrow-band signals that contain information from the original signal at different 
time scales. The IMF component is relatively simple when compared with the 
original signal. 

The EMD demonstrates that every complex signal is composed of different, 
simple, and non-sinusoidal signals. An IMF is a function that satisfies two 
conditions: (1) in the whole data set, the number of extreme and zeros must 
either equal or differ at most by one; and (2) the mean values of the envelopes 
defined by the local maxima and minima are relative time symmetric. There is 
only a single wave mode between two IMF zeros in each wave cycle. An IMF is 
the basic unit of decomposition of a signal in EMD. A one dimensional signal 
can be expressed as  
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where )(timfi is the i-th IMF, and )(trn is a monotonic residual function. 
The basic processing steps of the EMD are as follows[6,8]. 
 

1) Initialize 0 ( )r X t= and 1=i  
2) Extract the i-th IMF signal by 

(1) initializing 0 ( ) ( )ih t r t= ; 

(2) obtaining the maximums and minimums for )(1 thk− ; 
(3) applying cubic spline interpolation to the extrema series of 
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)(1 thk− to determine the upper and lower envelopes 

( )(1 tuk− and )(1 tvk− ) of )(1 thk− ; 
(4) computing the mean of the upper and lower 

envelopes, 2/))()(()( 111 tvtutm kkk −−− += ; 

(5) computing )()()( 11 tmthth kkk −− −= ; and 

(6) if the stopping criterion is satisfied, let )()( thtIMF kI = , 

otherwise set 1+= kk  and return to (2). 
3) Calculate the residual signal )()()( 1 tIMFtrtr iii −= − . 

4) If there are more than two extreme  for )(tri , set 1+= ii  and return 

to (2), otherwise the decomposition is complete and )(tri is a 
component of the residual signal. 

We can reconstruct the signal by adding the IMF signal components, which 
correspond to the definition in Equation (1). 

The first IMF, )(1 kh , has a smaller time-scale than the original signal. As 
the order of the IMF increases, its corresponding frequency gradually 
decreases[11]. The residual components, )(tri , have the lowest frequency[6~10]. 
The residual can be treated as a monotonic function according to the 
convergence criteria of the EMD, so its cycle is greater than the recording length 
signal. That is, )(tri is the trend. 

A sequence of deformation observations can be regarded as a digital signal 
sequence that is composed of different frequencies. The affected part may be 
periodic or quasi-periodic. And the random part may be regarded as a high 
frequency vibration that is influenced by stochastic factors and observation 
errors. Deterioration is represented by low frequency changes. In the EMD, the 
residual components ( )(tri ) have the lowest frequency, and as the scale 
increases the time-resolution gradually decreases. This means we can more 
obviously express developing trends in the signal. Therefore, the EMD method 
can be applied to deformations. 

Chaotic Prediction Time-scale Based on the EMD  

Chaotic time series theory implies that if the maximum Lyapunov index is λ , 

the maximum predictable time is approximately λ
1

.Therefore, a larger λ  

represents a shorter predictable time period , 0t . After this, it is hard to predict 
movement. Within this time, the prediction errors increase with each increasing 
prediction-step and eventually become constant. After exceeding the maximum 
time, the errors become significantly large and the predictions are meaningless. 
In this paper, we decomposed a nonlinear and nonstationary signal into a 
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stationary narrow-band signal using the EMD method. The data contained 
inFig.3 and Fig.4 show that the decomposed signals become more regular and 
less complex than the original. Therefore, we decompose the chaotic 
nonlinear-time series using the EMD method, and then analyze the relatively 
stable decomposition of each component. This effectively improves the 
prediction time and accuracy. To illustrate the effectiveness of the EMD method, 
we applied it to the famous chaotic Lorenz equation. The standard form of the 
Lorenz equation is 


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where 10=σ , 3
8

=b
, and 28=r . We used the fourth order Runge–Kutta 

algorithm to estimate the integral, with an integral length of 0.0001, and initial 
integration value of [1,1,1]. The output of zyx ,,  is shown in Figure 2. We 
calculated the maximum Lyapunov index using the small-data method, as shown 
in Table 1.The x component, y component, and each component of the EMD 
decomposition are shown in Figures 3 and 4. These results show that the 
proposed method increased the stability of the original signal, because each 
component of the maximum Lyapunov index was less than the original signal. 
The results also indicate that the predicted length for each component was 
greater than that of the original signal. Each component forecast is superimposed. 
This prolongs the forecast time interval, which is important when predicting 
deformable chaotic characteristics. Simultaneously, the enhanced stability 
improves the prediction accuracy when compared with the conventional method.  
 

0 2000 4000 6000
-20

0

20

t

x

0 2000 4000 6000
-50

0

50

t

y

0 2000 4000 6000
0

50

t

z

-40 -20 0 20 40
-20

0

20

x

y

-20 -10 0 10 20
0

50

x

z

-40 -20 0 20 40
0

50

y

z

-20
-10

0
10

20

0
10

20
30

40
50
-30

-20

-10

0

10

20

30

xy

z

 
Fig. 1 Lorenz simulation              Fig. 2 Three-dimensional map 
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Fig. 3 Intrinsic mode functions Fig. 4 Intrinsic mode 
functions  

and residual trend of X and residual trend of Y 
 

Table 1 The x component and its major intrinsic mode function’s largest 
Lyapunov index 

Date τ （time delay） 
m  

(embeddingdimensio
n) 

P （cycle） 1λ  0t  

Lorenz 10 5 70. 9 0.1238 8.07 

IMF1 12 5 145 0.0729 13.71 

IMF2 25 5 76 0.098 10.20 

IMF3 38 3 36 0.091 10.989 

IMF4 30 4 20 0.01201 83.263 

EMD-LLSVM Prediction Model 

It is important to detect periodic signals when conducting a deformation data 
analysis. When monitoring dynamic deformations of large or old buildings, the 
time series contains trend and cyclical components. Traditional methods often 
first fit a polynomial to the trend component, and then analyze the remaining 
residuals to see if they have a cyclical component. This method involves some 
subjectivity during the polynomial fitting phase. The EMD method eliminates 
these disadvantages. Signals can be adaptively decomposed into periodic signals 
and trend information using the EMD method, which helps when reconstructing 
the deformation forecast model. 
  We used a slope deformation level monitoring example, which is a multi-scale 
prediction model. Essentially, the actual monitoring deformation time series is 
decomposed into different scales using EMD. This separates the trend, periodic, 
and stochastic components. We then carried out an analysis and produced a 
forecast to synthesize predicting the original values of the time series.  
  We decomposed the sequence of dynamic deformation data into different IMF 
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components using EMD. The trend represents the large-scale composition, and 
random items correspond to small-scale components (Figure 5). The medium 
component generally represents a periodic item. Thus, the time series was 
separated into trend, periodic, and stochastic components, and each component 
was also separated depending on its size. For components with different scales, 
we selected the appropriate modeling method based on the characteristics of the 
data. We then combined the final composition forecast array to produce a 
multi-scale prediction model. 

Basic Modeling Steps. 

1) Trend prediction method  
The trend forecasting technique is relatively simple. We used a least-square fit 
for the predictions. 

2) Cyclical forecasting model   
We used period program modeling to forecast the periodic component. The basic 

algorithm is as follows. Suppose that a sequence of components 1 2, , , Nx x x  
is an approximation of a sine function, which minimizes the mean squared 
variance. That is, 

        ∑
=

++=
k

i
iiiii tfcx

1
)2cos( εϕπ  

where , iK c  and ( 1, 2, , )if i K=   are constants, iϕ  is a parameter 

within ( , )π π− , 
{ }iε is a stochastic process, and

2 2[ ] 0, [ ]i i iE Eε ε σ= = . This can be written as  

               1
( cos 2 sin 2 )

K

i i i i i i
i

x a f t b f tπ π ε
=

= + +∑
, 

where cosi i ia c ϕ=  and sini i ib c ϕ= − . 

If we have a prior knowledge about the frequency { }if  and k, it is known 
that Equation  can be regarded as a multiple linear regression model, in which 

ia  and ib are unknown. We can use the least square method with 

2

1 1
[ ( cos 2 sin 2 )]

N K

i i i i i
t i

Q x a f t b f tπ π
= =

= − +∑ ∑
 

to minimize Q and estimate the corresponding ia  and ib . Then,  

1

2 cos 2
K

i i i
i

a x f t
N

π
=

= ∑

 
and 
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π
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. 
Thus, we can forecast using  

  1
( ) ( cos 2 sin 2 )

K

i i i i
i

x t a f t b f tπ π
=

= +∑


. 
3) Stochastic prediction 
For the stochastic components, information from different scales is 

generally independent (so they can be dealt with separately) and is often 
stationary. We can predict stationary processes using an auto regressive model, a 
moving average model, or an auto regressive-moving average model. Some 
random components may be caused by human factors in the measurement 
process, and can be processed using a wavelet-threshold model. In fact, after 
multiple decompositions the influences of some random layers are negligible, 
and will not significantly increase the errors. 

4) Reconstruction  
We must then reconstruct the prediction signal by simply adding the above 
predictions. 

Experimental Results and Analysis.We analyzed our method by applying it 
to slope subsidence deformation monitoring data. Figure 5 contains the original 
precise level monitoring data and EMD decomposition. We used 40 phases of the 
data to build the original sequence, followed by five groups of the data that were 
retained for testing the forecast accuracy.  

 

 
 
 
 
 
We tested the proposed method as follows[12~14]. 

1) We decomposed the deformation data into signals of different scale 
components using the EMD method, as shown in Figure 5. 

2) Then, we fit a polynomial to the trend component. The last component 
of the EMD has an obvious trend. We determined that the polynomial fit 
was 

Fig. 5 Slope deformation data and multi-scale 
empirical mode decomposition 
 

Fig. 6 Comparison of the forecasted 
and observed values 
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418298.0)866.5(85377.3799.2)( tty +×−= . 
3) We fit a curve to the periodic components. 
MF(1) is also referred to as the HHT in terms of the energy-spectrum map. 
The periodic function fit was 

201.0)7/7/2sin(4706.0)4/5/2sin(77062.0 −−−−= ππππ ttyt

, 
which is the final forecast of IMF(1).  
For MF(2),  

)123016.09/22sin(77062.0 +⋅= tyt π , 
which is the final forecast of IMF(2).  
For MF(3),  

)23016.125/2sin(3.1 +⋅= tyt π , 
which is the forecast for IMF(3). 

4) The forecasts from the previous steps were then combined to calculate 
the final prediction. 

 
The prediction results for the next five time-steps using this method are shown in 
Table 2. The modeled and original values are shown in Figure 6. The polynomial 
directly predicted the accuracy of the new model. 
 
Table 2 Prediction values and errors for the next give periods using two 
prediction methods 

observedphasenumber 
 

measured -value
（mm） 

 
multiple-fitting 

Multi-scale decomposeable-prediction 
model of EMD 

 Predictive-value
（mm） 

 error（mm） 
Predictive-value

（mm） 
 error（mm） 

91 -22.9 -23.535 0.635 -24.02 1.12 
92 -23.4 -23.631 0.231 -23.547 0.147 
93 -23.9 -23.726 -0.174 -23.953 0.053 
94 -24.3 -23.82 -0.48 -24.56 0.26 
95 -24.7 -23.912 -0.788 -24.533 -0.167 

 
The data in Table 2 show that the EMD-LLSVM model is more accurate than the 
polynomial-fitting model. 

Conclusions 

In this article, we analyzed dynamic chaos-deformation characteristics of 
sequence data using the EMD. We considered the multi-scale decomposition 
scale characteristics of the forecasting model, and applied the proposed method 
to an example. Our main conclusions can be summarized as follows. 
   1) EMD signal analysis techniques can effectively obtain detailed 
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information for signal deformations and extend the valid forecast interval. 
   2) The proposed EMD-LLSVM prediction model can be applied to practical 
situations, as shown by our example. The experimental results indicate that the 
model is more accurate than the polynomial fitting model.  
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