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Abstract 

In [1], Fung et al, had constructed by a 
very fast algorithm: PSVM classifier, 
which mainly makes use of the 
Sherman-Morrison-Woodbury (SWM) 
identity [1, 7, 8]. However, for one thing, 
when handling nonlinear problems, the 
matrix H in (1) always is of dimension 
m m , such that the SWM identity is of 
no use. For another, for large scale 
classification problems, its inversion is 
not feasible and it is not stored. Aiming at 
the orientation problems, proposed in this 
paper is new fast algorithm. Experimental 
results also show LPSVM is fast and 
feasible to solve large scale classification 
problems.  
 
Keywords: large scale classification 
problems; inversion; conjugate gradient 
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1. Introduction 

The central idea of Standard vector 
machines (SVMs)[3,4] is to find an 
optimal hyperplane which makes the 
classified examples,in two-class problems, 
be separated well and enables the distance 
to the hyperplane to be as large as 
possible at the same time, a solution of 
which is to construct a constrained 

quadratic programming problems [5]. 
Standard SVMs mostly solve a quadra- 

tic program that require considerably 
longer training time mainly spent on 
iterative times and time.In contrast,from 
[1,6],we know that the proximal support 
vector  machine (PSVM) , were  imple- 
mented wherein each class of points is 
assigned to the closest of two parallel 
planes (in input or feature space) that are 
pushed apart as far as possible. This 
formulation, which can also be interpreted 
as regularized least squares and 
considered in the much more general 
context of regularized networks leads to 
an extremely fast and simple algorithm 
for generating a linear or nonlinear 
classifier that merely requires the solution 
of a single system of linear equations[1,6] 
However, despite of the achieved 
successes, it still has some flaws. When 
handling large scale classification  prob- 
lems, nonlinear PSVM will inevitably 
lead to longer training time due to the fact 
that we must compute the inversion of 
the m m matrix ( / 'I v H H )  in (1). 
Aiming at the orientation problems, 
proposed in this paper is new fast 
algorithm:a nonlinear Proximal Support 
Vector Machine Classifier Aiming At 
Large Scale Classification Problems 
(LPSVM), which is based on a conjugate 
gradent method[2].LPSVM avoids the 
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computation of the inversion of 
( / 'I v H H ) directly and the multi- 
plication between the matrix ,such that it 
is fast and feasible to solve large scale 
classification problems. 

We now describe the Sherman- 
Morrison-Wood-bury (SWM) identity 
that will also be utilized in this paper as in 
[1,7,8]: 
 

1 1( / ') ( ( / ' ) ')I v HH v I H I v H H H      (1)

     
where v is a positive constant that 
correspond to the punishment coefficient 
C in this paper. H is an arbitrary m n  
( )n m matrix.We can invert a m m  
matrix of the formulation (1) into a n n  
matrix by the identity.  

However, in kernel feature space, H for 
PSVM is always a m m  matrix, such 
that we should use the left formula in (1) 
when solving nonlinear problems , 

Which decreases the computational 
times, especially including the  multipli- 
cation between the matrices. 

2． The Proximal SVM [1,9] 

The central idea of SVMs can be 
expressed by a QP problem: 
 

1
min '
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corresponds to class label of i -th 
sample, m nA R  .But, in most cases, the 
formulation (2) has not feasible solution 
because some data is not separable 

linearly, such that one introduce to relax 

the constraints in (2): 
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One minimizes from (2) and (3): 
 

1
min ' '
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where the positive constant C determines 
the trade-off between the empirical error 
and the  complexity  term . The optimi- 
zation problem (4) can also be substituted 
by (5) as in [7,8,11]: 

            
2 21 1

min ( ' ) || ||
2 2

( )

w w b C

subject to D Aw eb e





 

  
  (5)            

                
Make a simple reformulation in (5), 

one gets PSVM problem: 
 

2 21 1
min ( ' ) || ||

2 2
( )

w w b C

subject to D Aw eb e





 

  
  (6) 

 
Forming the Lagrangian of (6) with 
multiplier u : 
 

2 21
( , , , ) || || || ||

2 2

'( ( ) )

wC
L w b u

b

u D Aw eb e

 
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 
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 
   

  (7) 

 
and setting partial derivatives concerning 
the primal variables ,w, b, ,equal to 

zero, we can get the KKT optimality 
conditions as follows: 
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After handling the equations of (8), on

e can get  
 

1 1( ( ' ') ) ( )
I

u D AA ee D e W e
C

      (9)   

         
where / 'W I C HH  .Here [ ]H D A e  . 
In kernel feature space, when making use 
of the Sherman-Morrison-Wood-bury 
(SWM) identity is used here, one can get 
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3． LPSVM In Kernel Feature space 

However, in kernel feature space, H is 
always a m m matrix (c.f. linear PSVM), 
such that the formulation (9) should be 
used in this paper ,which dec reases the 
computational times especially including 
the multiplication between the matrix. 

The matrix W  in (9) is of dimension 
m m , where m  is the number of 
samples. For large scale classification 
problems, the m  will be large, such that 
the inversion of the matrix is not feasible. 
To avoid solving the inversion of the 
W a conjugate gradient method is used 
[2], which solves AX B with m mA R   
symmetric positive definite and mB R  
as follows: 
 
 
 
 

Conjugate Gradient Algorithm  
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End 

jx x                  (11) 

We know from [8], W is symmetric 
positive definite, so (9) can be solved as 
follows: 
 
LPSVM algorithm 

1. Compute matrix H , W . 
2. Solve u from Wu e u using 

Conjugate Gradient Matlab Code. 
3. Compute 'b e Du   

 
We clearly see from (11) that the 

matrix A is not stored, such that it enables 
solving the large scale classification 
problems. 

A complete MATLAB code of 
nonlinear LPSVM is given. From the 
code, we find u value got by the function 
for conjugate gradient method, and the 
Inversion of A in code 3.1 is avoided to 
solve, such that it can solve large scale 
classification problems. 
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Code 3.1 LPSVM MATLAB Code 
Function [u, bias] = lpsvm(K,D,C,tol,itmax) 
% LPSVM: nonlinear classification 
% [r gamma] = lpsvm (K,D,C); 

[m,n]=size (K); e=ones (m, 1); 
H=D*[K -e]; 
A=speye(m)/C+H*H'; 
[u,niter,flag]=solveCG(A,e,tol,itmax);①  

h=D*u; 
bias=-sum(h);  

 
.①  The function for Conjugate Gradient 

algorithm can download from the 
website:http://matlabdb.mathematik.uni-s
tuttgart.de/download.jsp?MC_ID=3&SC
_ID=5&MP_ID=168 

4．  Experiments and analysis 

In experiments, for each SVM, Gauss 
kernel is selected because of its better 
performance. The optimal C parameter is 
selected using 5-fold cross-validation 
over the range C= {1,10,…,∞} , where C 
is the punishment coefficient.  
 
4.1. Comparison with LPSVM and 

SVM for classification 

Choose different Kernel parameters  

 
Gamma(  ),we compare the testing 

correctness and running time between 
LPSVM and PSVM directly for 
classification.We carry out experiments 
on eight small datasets: Wine, Spect, 
Abalone, Yeast and three different Breast 
Cancer Wisconsin (Diagnostic) data sets 
from UCI [10]. 

The experimental results for testing set 
correctness under different  ’s are shown 

in Figure 1, and the best classification 
based on LPSVM and SVM are shown in 
Table 1. We clearly see from the results 
that the classification performance of the 
proposed LPSVM is comparable to that 
of SVM. Specifically, from the table 1 
shown on Abalone, Yeast, WBCD, 
WPBC and WDBC data sets ,we can find 
that  the best test set correctness when 
employing the proposed LPSVM are 
64.27% , 69.11% , 100% ,88.66% and 
94.05% ,  respectively,  which are com- 
parable to those based on SVM 

In a word, it is easy to conclude the 
classification performance of the LPSVM 
cannot be lower than that of SVM. 
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Fig 1: A comparison of the classification performance of the proposed LPSVM and SVM under 

different Kernel parameters ’s. 

 
Table 1: The best testing set correctness of the proposed LPSVM on six experiments and by SVM. 

 
4.2. Comparison with LPSVM and 

SVM for Computational time 

We report the experimental training time 
results of LPSVM and SVM on six 
datasets from[10] in Figure 2.From 
Figure 2,we can see,when employing 
LPSVM, that it can yield significantly 
less training times compared to those 
spent on standard SVM . For instance, on 
Abalone ,WBCD and WDBC data sets, 
SVM spends the least training times of 

57.80 (sec.),4.7 (sec.) and 4.6 (sec.) , 
which are 83.71% ,60% and 61% higher 
than those of SVM. 

As a result, we can conclude LPSVM 
is fast and feasible when handling large 
scale classifiation Problems. 

 
 
 
 
 

 

Dataset 
 

SVM 
Test(%) 

LPSVM 
Test(%) 

Spect 55.61 91.98 
Abalone 64.27 64.27 

Yeast 67.68 69.11 
WBCD 100 100 
WPCD 88.66 88.66 
WDBC    95.05 94.05 
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Fig 2: LPSVM and SVM training times using a nonlinear classifier on six datasets. 

5． Conclusion and Further Work 

PSVM mainly makes use of a property 
for the Sherman-Morrison-Wood-bury 
(SWM) identity [1, 7, 8]: a m m matrix 
of the formulation (1) (i.e. / 'I v HH , 
where H is of dimension m × n) in 
(1) ,can be inverted into a n n  matrix 
( i.e. / 'I v H H ).But,we know,in kernel 
feature space, H is always of dimension 
m m ,such that the computational times  
will increase if we use PSVM algorithm  

 
 
for solving the support value u in (10). 
What is more, for large scale 
classification problems, its inversion is 
not feasible and it is not stored. Aiming at 
the orientation problems, we propose a 
new fast algorithm: a nonlinear Proximal 
Support Vector Machine Classifier 
Aiming At Large Scale classification 
Problems (LPSVM), which is based on a 
conjugate gradent method [2]. LPSVM 
solves a linear system instead of quadratic 
programming for SVM case. The 
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performance of the classifiers are turned 
out to be comparable to SVM, and it is 
fast and feasible when handling large 
scale problems due to the fact that it 
avoids solving the inversion of the matrix 
W . 

Our future work mainly includes the 
research in multicategory LPSVM, sparse 
approximation PSVM and the extension 
of its applicability.  
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