
 1

A Service Replic Distribution Scheme
Based on Group Structure

Yang Wangli 1 Wang Huiying2
 （School of Computer Science Engineering Daqing Petroleum Institute Daqing,

Heilongjiang 163318, China ywl008@126.com）
 （Thermal Power Plant of Electric Power Daqing Petroleum Administratrive

Bureau Daqing, Heilongjiang 163314, China）
Abstract
 How to effectively distribute service replicas
to its n nodes is of much importance in
distributed and parallel systems. In many
cases, the service replicas are randomly
placed, and some service replicas have no
relation to any nodes in which they are. So
these service replicas are very difficultly
accessed, and the flexibility of the system is
poor. This paper presents such a novel service
replicas distribution scheme. Instead of
traditional method, this scheme is mainly
based on the group structure that makes every
node relate to the characteristics of the service
replicas. The proposed scheme is very flexible
to change the structures of the service
applications. So the scheme can be employed
to many scenarios where service replicas are
needed.

1. Introduction

The Internet has experienced an explosive
growth over the last decade. Making
information available to a rapidly growing
user population with a high service
quality is quickly becoming a very
important and challenging problem.
Wide-area distributed systems often
replicate entities in order to improve
reliability, access latency, or
availability[1,2]. But most replica services
only provide Content replica. These
services are mostly passive and they only
wait for the requests of clients. Based on
the mechanism, the applications of clients
must account for some problems such as
replica access latency, replica location and
transparency. Recently we have seen

some proposals giving solutions to these
problems.

The rest of the paper is organized as
follows. Section Ⅱ gives preliminary
concepts and group basics. Section Ⅲ
presents the new service replicas
distributing scheme based on group
structure. Section Ⅳ presents some
previous schemes and applications.
Section Ⅴ denotes a simulation to
compare our scheme with a traditional
one. Section Ⅵ concludes the paper and
present future work.

2. Preliminary

In this section, some related concepts of
semigroup and group [1] are given:

Definition 1 (Semigroup): Given a non-
empty set s on which a binary operation
S S S⊗ → is defined and “ ⊗ ” is a
mapping:

, ;a b S a b c S∀ ∈ ⊗ = ∈
The cardinal number S is called the

order of the semigroup S. we can write
(,)S ⊗ simply as S.

Definition 2 (Subsemigroup). If (,)S ⊗
is a semigroup, then a non-empty subset A
of S is called a subsemigroup of S if it is
closed with respect to multiplication:

AcbaAba ∈=⊗∈∀ ,,
Definition 3 (Group). If),(⊗S is a

semigroup, then),(⊗S is called a group if
it has the following properties:

aaebaSaSe =⊗=⊗∈∀∈∃ ,,
eaaaaSaSa =⊗=⊗∈∃∈∀ −−− 111 ,,

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

A Service Replica Distribution Scheme Based on Group Structure

 2

Espcially, e is called as the identity
element of the group S.

Definition 4 (Subgroup). If),(⊗S is a
group, then a non-empty subset A of S is
called a subgroup of S if it is closed with
respect to multiplication:

, ,a b A a b c A∀ ∈ ⊗ = ∈
Definition 5 (Generating Set): If

{ | }iU i I∈ is a non-empty family of
subgroups of a group S, then it is easy to
see that∩ }|{ IiU i ∈ is either empty or is
itself a subgroup of S. If A is an arbitrary
non-empty subset of S, then the family of
subgroups of S containing A is non-empty.
Hence the intersection of the family is a
subgroup of S containing A. We denote it
by 〈A〉, the semigroup 〈A〉 consists of all
elements of S that can be expressed as
finite products of elements in A. If 〈A〉= S
we shall say that A is set of generators for
S or a generating set of S.

Definition 6 (Monogenic group). If A is
a finite set {a1, a2, a3, … ,an}, we shall
write 〈A〉 as 〈 a1, a2, a3, … ,an 〉 .
Especially it is the case where A={a},
when 〈a〉=〈a1, a2, a3, … ,an〉. We refer to
〈a〉 as the monogenic subgroup of S
generated by the element a. The order of a
is defined as the order of the subgroup
〈a〉. If a group S has the property that S
=〈a〉 for some a in S, we say that S is a
monogenic group. a is called by the
generator of the monogeric group A.

Definition 7 (Group Homomorphism
Mapping). If TSf →: is a mapping from a
group),(⊗S into a group),(⊕T , we say
that f is a homomorphism if it has the
following properties:

)()()(,, bfafbafSba ⊕=⊗∈∀
Definition 8 (Coset):If H is a

subgroup of a group S and
}|{, HhhaHaSa ∈=∈ , we say that

}|{ HhhaHa ∈= is a Coset of S and a is
the representative of Ha .

Definition 9 (Normal subgroup):
Given H is a subset of S, A is called a
normal group of S if it has the following
property:

,a S Ha aH∀ ∈ =
Definition 10(Abelian group): Given

(,)A ⊗ is a group, it is called a Abelian
group if it has the following property:

, ;i j i j j ia a A a a a a A∀ ∈ ⊗ = ⊗ ∈
Lemma 1. The subgroup of Abelian

group is Normal subgroup.

3. Previous schemes and applications

In this section, we introduce some
previous schemes and application based
on group. It is importance of multicast
communication in distributed and parallel
systems. Recently, the technique has been
employed in many fields[2-5]:

First, some applications employ Active
Replication, Passive Replication or multi-
version to copy the important services as
multi-replica and distribute to the
different nodes in distributed and parallel
system. When a client sends a request to
an important service of the system, it
actually sends a message to the group of
replica. Because each of the group can
provide the same service, if a node
breakdowns then it will not reflect other
nodes. Only one node running, the
requests of clients can be replied.

Second, CSCW has been employed in
many business fields. These applications
always are consisted of many nodes and
the nodes must correspond with each
other. For many partions of the nodes,
multicast communication must be
employed to serve for these partions.

Third, distributed objects can be
located in a distributed and parallel
system. For example, clients probably
search a file in a distributed operation
system V-Kernel, and they broadcast a
message to all servers for it. All servers
receive the message, but only file servers
need to reply. It is easy for clients to find

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

 3

a object in a system which can provide
multicast communication service.

Fourth, multicast communication can
be employed to balance load in a
distributed system. When a server
overruns, a distributed system should
select other servers to replace it or
subtract some load to them. Multicast
communication is import to select a
favorable subgroup.

But many problems are found in the
schemes and applications:

Firstly, to manage the relation of the
service replica in a distributed system is
difficult. When the scale of a system has
been changed, each node of it has difficult
in adapting itself to the system.

Secondly, Multicast communication has
difficult in select a favorable subgroup
that will accept a message multicasted.
And broadcast will waste much
brandwidth and reflect those nodes that
will not reply specific requests.

Thirdly, failure detection brings on a
series of faults. When a node recovers
from a system breakdown, it will probably
“forget” all services that it shall provide.
That is to say it is “Lost Memory”. But in
most cases, they will not adapt themselves
to the system and search those service
distributed to them. For infinite search the
service belonged to them, they also will
go into an infinite cycle.

As presented above, we know that these
restrictions have narrowed the application
areas base on group. We must present a
new scheme to solve these problems.

4. The prosed scheme

The proposed service replica distribution
scheme is based on the group Theorem.

Let S be {s0, s1, s2…sm}, si is a kind of
service in a distributed and parallel system
that has m nodes. Each si has some replica
to serve for our system exterior request.
The service replica distribution scheme is
as follows:

Every si has some replica distributed in
our system. si is defined by a ternary
group si :(snamei , sidi , srni). snamei is
the name of. si , sidi is the indentity of si
and srni is the number of the replicas
which si has in our system. And every si
has a set of nodes Ai.

Let Ai is a set of nodes {a1, a2 … an,

∅ } and ai is the identity of one node. ∅
is the null that any service can be provide.
We can access to the replica of si in the
set Ai if we have an identity ai. And these
nodes work independently, but ai is
relative to each other. Especially in our
scheme, a1 is equal to the sidi of the si of
which it have replica. And the srni saves
|A|.

In following section, we simplify Ai as
A.

Definition 12 (Selection Operation):
“☉” is a binary operation on A and the
operation is defined as:

(1) ai☉aj= a(i+j)
if 0≤i,j≤|A| and 0≤i+j＜|A| ;

ai☉aj= ∅
if 0≤i,j≤|A| and i+j≥|A| ;

(2) ai☉∅ =∅☉ai= ai
(3) ∅☉∅ =∅

We call the operation “☉” by selection
operation. The set A on which a binary
operation A A A→ and the mapping
“ ” are consist of a group. The proof is
following as:

(1) A is a non-empty set. If n=0 ,
A={∅ }.

(2) ai☉aj= a(i+j) ∋ A
if 0≤i,j≤|A| and 0≤i+j＜|A| ;
ai☉aj= ∅ ∋ A
if 0≤i,j≤|A| and i+j≥|A|;
So (A, ☉) is a semigroup.

(3) ai☉∅ = ∅ ☉ai= ai and ∅ ☉

∅ = ∅ , so ∅ is the identity
element e.

(4) ai☉aj=∅ if 0≤i,j≤|A| and i+j
≥|A|.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

A Service Replica Distribution Scheme Based on Group Structure

 4

And ∅☉∅ = ∅ , so every element a of
A has a converse element.

So (A, ☉) is a group.
(5) Every element can be attained

from a1:
1

1 1
1

i

ia a a
−

= ∏ if i<|A| ;

And ∅ =
1

1 1
1

i
a a

−

∏ if i=|A|.

So (A, ☉) is a monogenic group. And
a1 is the generator of the monogenic
group.

According to the definitions, we have
prove that (A, ☉) is a monogenic group.
The group A provides a kind of service to
request. And its subgroups and every its
element can provide the same service. So
the scheme based on group structure can
solve the problems presented above. The
rest of the section discusses of solving the
problems presented above.

A. Service Access Probablity
When a distributed and parallel system

based on group runs well, all requests of
clients will be averagely distributed to
those nodes. If a node breakdown, those
clients who send requests to it will
generally repeat to send requests to it until
overtime. Then those clients don’t receive
responses and notify the system what has
happened. The system perhaps provide
anther node to clients and clients will
repeat to send requests.

Instead of traditional schemes, our
scheme is based on group and the nodes
received these requests sent to the group
in equal probability. So a request for a
kind of service is sent to a node, and the
next request is not always sent to the same
node. Given a node breakdowns, and it
doesn’t reply the request. Then, the next
request is sent for the same kind of
service and it will probably be sent to
anther node instead of being continuously
sent to the same node. Given k requests
will be sent for the same kind of service

from clients. For example, the service
access probability is 11 ()k

n− when one

node breakdowns. There, 1()k
n is the

probability that all requests are
unfortunately sent to the fault node.

According to our scheme, the requests
for a kind of service will not always sent
to a node that has break downed. And the
reply will be achieved before being
conscious of the error. So the latency
caused by repeated requests decreased. A
stimulation of the scheme will be given in
the section Ⅴ.

B. Recovery of “Lost Memory”
When one node recovers from a system

breakdown, it will not find these services
that it should provide to the distributed
and parallel system. It is called “Lost
Memory” as present above. In our
scheme, the problem is solved by the
properties of the monogenic group.

The identity ai of every node is fixed
and it will not be lost. When a node
recovers from a system breakdown, it
only has the identity ai of itself. Then it
requests all si from our system. If it has
received a si, the node gets a ternary
group si:(snamei, sidi, srni), and the sidi
saves the generator of the set that provide
the service si. The node ai checks whether
the sidi is the generator of the group that it
belongs to. If the sidi is its generator, it
starts up the service. It actively gets the
service replica from our system if it does
not have the service replica.

We only need to prove that every node
can always be or not be generated by a
si:(snamei, sidi, srni) in finite steps. The
proof is following as:

sidi is the generator of the set which
includes the node ai.srni is equal to the
order |A| of the node set. And each
element of A has the properties:

ai=
1

1 1
1

i
a a

−

∏ if i<|A| ;

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

 5

∅ =
1

1 1
1

i
a a

−

∏ if i=|A|.

If ai belongs to A, then there must be

i(i<|A|) and ai=.
1

1 1
1

i
a a

−

∏ If ai does not

belong to A, then ∅ =
1

1 1
1

i
a a

−

∏ when i=|A|.

However, the calculation for ai will not go
beyond the limits of srni. So ai can start
up these services in finite steps.

C. Load Balancing Based on Subgroup
Group structure has some

characteristics to classify the elements of
groups. In our scheme, we employ coset
to realize load balancing. Normal
subgroup is a set of elements that have the
same characteristics. If a subgroup of
nodes can consist of a normal subgroup，
we can distribute load to every node of
the set and balance load. When the load of
a node overruns its limitation, our system
can classify the nodes that provide the
same service to balance load by normal
subgroup. We select the node whose load
overrun as the representative of the
normal subgroup. Our system can
dynamically generate and balance load,
because every kind of service has its set
of replica and we can select some nodes
including the overrunning node to
generate a subgroup to share in the load.

Given H is a subgroup of A, and if a
Hai or aiH is also a subgroup of A, then
we can distribute the load of ai to the
subgroup H. The proof is following as:

There, A is a group, a is randomly
selected from A and H is a subgroup of A.
Because the load is distributed from a
specific node a, H includes a. We must
prove that Ha and aH is the subgroups of
A.

Firstly, ,i ja a A∀ ∈ ai☉aj= a(i+j) = aj☉ai
∋ A, so A is a Abelian group;

Secondly, according to Lemma 1, H is
a normal group and Ha=aH;

Thirdly, if a ∋ H and H is a group, then
a-1 ∋ H.

aH ⊆ H ⊗ H=H;
H=(a ⊗ a-1) ⊗ H=a ⊗ (a-1 ⊗ H) ⊆ aH;

So Ha=aH=H
So Ha and aH are subgroups of A. That is
to say the system can distribute load to a
subgroup.

5. Simulation results

Fig. 1 Average latency of two schemes.
In order to evaluate the scheme, we
developed a simulator based on it. This
simulator provides a modular simulation
framework through which we can
compare our scheme with these traditional
methods. In the simulator, we assumed a
group, which provide services according
to our scheme. According to the
traditional methods [6], if a request is not
be replied, then the next two requests will
be sent to the same node. The node will
be regarded as a node break downed if the
three requests are not replied. And clients
will request to the next nodes. There are
30 nodes in the simulator for the two
schemes. Within these models, some
nodes that are randomly selected will
breakdown to evaluate them.

Figure 1 shows the average response
time of them. Every pair of data shows the
comparation of the two schemes that has
the same number of the nodes that has
broken down. We plot the simulation time

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

A Service Replica Distribution Scheme Based on Group Structure

 6

on X-axis and the average response time
on Y-axis.

According to the different requests and
the number of fault nodes, the average
latency is different. As we see above, the
average latency of our scheme is shorter
than that of the traditional scheme.
Because in the traditional scheme, some
indexed sequential nodes break down, and
clients repeat to request to them and the
latency is greatly increase. Within 0th and
9th pairs of data, the latency of ours is
almost 1/2 shorter than that of the
traditional scheme. Within 7th pair of data,
the latency of them is the same without
fault nodes. As we can see, the
performance of our scheme is higher than
the traditional especially in indexed
sequential nodes.

6. Conclusions

Group is a great field of algebra. It has
some promising properties to improve the
performance of service replicas
distribution schemes. In the paper, we
address some problems in traditional
schemes and present a novel scheme
based on group structure. And it can be
used to improve service access time,
service availability and so on.

Our simulation results are very
promising, and showed that the performce
of the novel scheme is greatly improved.
We note that our scheme has significant
advantages. First, it can improve serivce
access probablity, and second it can
recover from “Lost Memory”. At last, it
can generate a normal group to balance
load intead of the entire system.

7.References

[1] Aigner M, Combinational Theory, M,
New York, Springer-Verlag, 1979, pp.
134-145.

[2] Hu Liang, “A dynamic load balancing
system based on data migration”, M.
Computer Supported Cooperative

Work in Design, The 8th International
Conference, 2004,5 , pp. 26-28.

[3] Legrand, “Mapping and load-
balancing iterative computations”, J.
Parallel and Distributed Systems,
2004,6, pp. 546-558.

[4] Tanenbaum, A.S, Distributed
Operating System, M. Prentice Hall,
1995, pp. 212-231.

[5] Youn. C, Chung L, “An efficient load
balancing algorithm for cluster
system”,C. Proceeding of Network and
Parallel Computing - IFIP
International Conference, 2005, pp.
176-179.

[6] Porter. G, Katz. H, “Effective web
service load balancing through
statistical monitoring,” J.
Communications of the ACM, vol. 4,
no. 3, pp. 49-54, 2006.

PROFILE
Yang Wangli. An assistanted

professor of Daqing Petroleum
Institute. Her research interest is
database application.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

