
Secure Encapsulation of Insecure Mid-
dleware

ZHAO Jian-min1 ZHANG Wei2 LI Tian-gei3
1 Daqing Petroleum Institute, Daqing, Heilongjiang, 163318, China

2Oil Recovery Plant No.9 of Daqing Oilfield Corp.Ltd., Daqing, 163853, China
3 Natural Gas Sub-company of Daqing Oilfield Corp. Ltd., Daqing, 163459, China

Abstract

Unceasingly developed and deeply
exploited along with the software system,
the variety of middlewares becomes more
and more, they mutually affect each other
in the complex way. These middlewares,
because of the complex of the origin, are
not extremely credible. So, before using
these middlewares, we must understand
the security features of them, for instance,
the secret data cannot be leaked in the
network. But, it is very difficult to
confirm whether these middlewares have
good security feature. The paper designs
the encapsulations, which let these
middlewares run under secure
environment, and it provides the control
of good granularity among the
middlewares, the middleware and other
system resources. The main part of this
paper is to research the expression
methods of the encapsulations, and we
state and verify the security through these
methods. This paper uses box- calculus to
describe several kinds of encapsulations,
and discuss the security that each
encapsulation could guarantee.

Keywords: Middleware, Encapsulation,
Security, Calculus

1. Introduction

The software system develops
unceasingly, more and more sole
applications are replaced by software

middlewares which come from different
origins. Now, widely, the distributed
application systems are all constructed by
some small middlewares, they mutually
affect each other in the complex way,
execute various information processing
task. Furthermore, although middleware
base doesn't change, and system
administrator often controls middleware
base, it is easy to download source code
in the network; some technology even
allows dynamic use new middleware
during the course of program running.

Under such variable environment of
operation, the traditional security
mechanism and the strategy appear
extremely draggle. Though the password
and the access control mechanism suit to
protect the integrity of system, it can't
solve the problem that user download
current running code. Some methods (for
example Java sand box) promise the
security through isolation. But, these
methods are also unsatisfying, because
the middleware can mutually affect each
other freely, or each other do not
mutually affect radically. So we need a
kind of extremely good protection
mechanism, which can control the mutual
connection between the middlewares.

Although it is not easy to analyze and
modify large-scale and the third party
software package, it can prevent
correspondences between the software
package and other parts of the system,
distill the code of different software
middleware boundary. So, it can monitor
the transfer operation and commutative

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

data among these middlewares. This
paper entitles the security encapsulation
which can encapsulate the code frame of
the incredible middlewares.

Obviously, writing to encapsulation
cannot leave End-User simply, user only
to choose the most appropriate
encapsulation, make its parameter and
install it. All these processes are dynamic:
comparing with the new application
procedure, the encapsulation should be
easier to join to the movement system.
The user needs the encapsulation to be
able to guarantee a secure clear
description.

This paper main researches security
environment of encapsulation, discusses
with emphasis that how to express the
encapsulation, and can define strictly and
prove it. Obviously, if there is not such
strict definition and verifying, it is
difficult for the designer to study
thoroughly. Although the encapsulation is
very important, it is possibly small
software, therefore it is very easy to
prove its attribute.

2. Safety encapsulation

This paper designs four encapsulations.
The first encapsulation has encapsulated
an independent middleware, limits it’s
correlation with outside and only follows
the specific protocol to be able to
correspond with outside processes. The
second encapsulation is very similar with
the first, only has recorded log of all
correspondences. The third encapsulation
has encapsulated two middlewares, it
allows each middleware to interact with
outside through the definition way, and
the information of the first middleware
may transmit to the second middleware.
The fourth encapsulation has
encapsulated three middlewares, and has
controlled the interactive between it and
environment, has limited these
correlations which merely have realized

through channel in and out, has achieved
the secure goal.

The design of an encapsulation must
connect with the transmission protocols
which use in some middlewares and envi-
ronment or among middlewares. Regard-
ing the first two encapsulations, the paper
has fixed two channels, in and out. They
are all independent in receiving and
transmitting information. Besides, here
supposed middleware can execute in sev-
eral independent boxes. The received
values v, we make its copy, and make a
pair < y y > and output it. This can write
as:

! .in y out y y
↑↑ < >

A wrong middleware can also import
data to an illegal output channel. For ex-
ample:

! .(|)in y net y out y y
↑ ↑↑ < >

Or monitor the transmissions in other
parts of this system, for example:

**! .(|)c y net c c y
↑

When we describe a middleware

whether follows adding label to
transforms the semantics, for unitary
encapsulation P may operate normally,

when only A |
1

P
kl l

Q→
…

 , then jl is

in v↑ , out v
↑

orτ .

3. Filter encapsulation

Filter is referred as the encapsulation
which can purely limit the capacity of
traffic. Considering a static filter encap-
sulation which only interactive between
in and out channels.

Install a massager; it can cross the
boundary to transfer legitimate informa-
tion, executing middlewares in a new
naming box throughout the process W1.
Notice that the relation of W1 and deep
encapsulation isn't binding, it is equal.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

Supposing, anywhere apply W1 to a proc-
ess P, cannot freely bring new binding a
in P. Do not consider the performance of
P, W1 [P] must follow one kind of proto-
col that can describe clearly through
marking transmission primitive.
Proposition 1 For any process
P, ()a fn P∉ , if

A | 1l[P] kl Q⎯⎯⎯→…
1 W then jl is

in v↑ , out v
↑

 orτ form.
We can prove it through obtaining di-

rect description of the condition. But this
condition can be obtained by adding
marking transform W1 [P]. This charac-
teristic of unitary encapsulation is espe-
cially abstract.

4. The log encapsulation

Filter transmits the transcription periph-
ery through log channel, and keeps all
correspondences log in the proc-
ess.

[_] ()([_]

|! .(log |)

| .(log |)

def

a

a

L va a

in y y in y

out y y out y

↑↑

↑ ↑

=

An encapsulation middleware []L P also
can alternate through restricted ways once
more.

Proposition 2 For all middleware P
and ()a fn P∉ ,

if A | 1lL[P] nl Q⎯⎯⎯→… , then jl is

in v↑ ，out v
↑

， log v
↑

 orτ .

5. Pipeline encapsulation

Pipeline encapsulation can control re-
strained information flow between two
middlewares. Here gives duality encapsu-
lation W2, which contains two pieces of

processes. There are two middlewares

iQ which are encapsulated

in 2 1 2[,]W Q Q , and can intact with envi-
ronment with channel ini and outi, more-
over, 1Q can transmit messages to 2Q
through mid channel. Here the execution
of pipeline is disorder.

1

2

1

2

21

2 1 2 1 2 1 1 2 2

1 1

2 2

1 1

2 2

1 1

[,] (,)([] | []

|! .

|! .

| .)

| .)

| .)

def

a

a

a

a

aa

W va a a a

in y in y

in y in y

out y out y

out y out y

mid y mid y

− − − −

↑

↑

↑

↑

=

Likewise, when W2 was not bounded, we
always apply W2 to processes 1 2,P P , and

suppose 1 2 1 2{ , } (,)a a fn P P φ=∩ . If
only it satisfies the suitable free name for
any process, this is 1 2 1 2{ , } (,)a a fn P P φ=∩ ,
then we think that the duality encapsulate
is true, if A | 1l

1 2L[,] nlP P Q⎯⎯⎯→… ,

then jl is iin v↑ ， iout v
↑

 or τ form.
Proposition 3 W2 is true.

For instance, suppose, 2P mid v
↑

= , the
second encapsulated process transmits a
data to the first process.

2

2 1 1 2 1 1 2

1 2 1 1 2

[,] (,)([]| []|)

(,)([]| [0]| |)
a

W P mid v va a a P a mid v R

va a a P a mid v R

↑ ↑
=

→

 There R is an integration of parallel

transmitting. The outputting of
2a

mid v
can't carry on deeper interaction under the
decisive conditions, so when 2a is lim-
ited, it can't hand over more deeper inter-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

action with each other surroundings the
environment, also, when 1a ≠ 2a , it can't

deliver
21 .

aamid y mid y! .
These encapsulations are supposed

with a simple and fixed protocol. It di-
rectly produces a series arbitrarily chan-
nel to replace in, out and mids, and it also
directly allows n-encapsulation to encap-
sulate a lot of middlewares, which makes
information transmitted according to the
given order among the middlewares.

6. Ternary encapsulation

Figure 6.1 ternary encapsulation
Figure 6.1 showed us encapsulation W
which encapsulates three middlewares M1,
M2, and M3, and it controls the interac-
tions with environment, and limits these
interactions which carry out through the
channel in and out to get the security pur-
pose. M1, M2, and M3 are all connected
with net; M3 is also connected with open
window.

We define a ternary encapsulation W to
encapsulate middlewares, which are
named M1, M2, and M3, so produce three
boxes which named a1, a2, and a3, they
have two transmission channels--one re-
ceives information through the channel in
from environment, and send information
to the encapsulation process; another re-
ceives information from encapsulation
process through the channel out, and

sends information to environment. The
M1 still has a log channel.

|!)log|(1

1 yyinin
ay ↑

⋅
The sensor receives information from

environment through channel in1, and
sends information to the encapsulation
process of a1, and records the communi-
cation through the log channel.

|!)log|(11
1 yyoutyout a ↑↑

⋅
The sensor receives information from

the encapsulation process of a1 and sends
information to environment, and records
the communication through the log chan-
nel.

|! yinin
a2

2 ⋅↑
The sensor receives information from

environment through in2 and sends in-
formation to the encapsulation process of
a2.

|! youtyout a ↑
⋅ 22

2
The sensor receives information from

the encapsulation process of a2 through
the channel out2 and sends information
into environment.

|! yinin
a3

33 ⋅↑
The sensor receives information from

environment through in3 and sends infor-
mation to the encapsulation process of a3.

|! youtyout a ↑
⋅ 33

3
The sensor receives information from

the encapsulation process of a3 through
the channel out3 and sends information to
environment.
|!

)log|_(_ 1

11 yyinnetyinnet
a ↑↑ ⋅

The sensor receives information from
net through channel in1, and sends infor-
mation to the encapsulation process of a1,
then records the communication through
the log channel.
|! ⋅youtnet a1

1_

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

The sensor receives information from
the encapsulation process of a1 through
channel in1, and sends information to net
if it did not contain personal information
such as the E-mail, and then records the
communication through log channel, or
records the communication as empty
process.

|! ⋅↑ yinnet 2_ if y doesn’t come from

some domain or IP then yinnet
a2

2_
else 0.

The sensor receives information from
net through channel in2, and sends infor-
mation to the encapsulation process of a2
when the information y doesn’t come
from some domain or IP, or records the
communication as empty process.

|! youtnetyoutnet a ↑
⋅ 33 __ 3

The sensor receives information from
the encapsulation process of a3 through
channel out3, and sends information to net.

|! ⋅↑ yinnet 3_ if

},{ installupdatey∈ then

yinnet
a3

3_ else 0
The sensor receives information from

net through channel in3, and sends infor-
mation to the encapsulation process of a3
when y updates or installs information, or
records the communication as empty
process.

|! youtnetyoutnet a ↑
⋅ 33 __ 3

The sensor receives information from
the encapsulation process of a3 through
channel out3, and sends the information to
net.
|! ⋅ymid a1

13 if(}1,0{∈y then

ymid
a3

13 else)log|0 y
↑

M1 sends information y of encapsula-

tion process of a1 to M3 through channel
mid13, when y is 0 or 1, sends information
of encapsulation process of M3 to M1,

otherwise, records the communication as
empty process.
|!

⋅ymid a1
12)log|(2

1 yymid
a ↑

The sensor exchanges information be-

tween M1 and M3 through channel mid13,
and records the communication through
log channel.
|!

⋅ymid a1
12)log|(2

1 yymid
a ↑

The sensor exchanges information be-

tween M1 and M2 through channel mid12,
and records the communication through
log channel.

|! ⋅ymid a2
23 ymid

a3

23
The sensor exchanges information be-

tween M3 and M2 through channel mid23.
|! sopenwindowa (3

)x sopenwindow <⋅
↑

 >x

| getcx (↑ putc ⋅)close getcx
a
<3

putc close >

|! cgetcygetca <⋅
↑

(3

)| 3 cyyy
a↑>

|! cputca (3 cputcy <⋅
↑

()

)| 3a
yyy ⋅> ↑

|!)|(33
aa yyycloseyclose ⋅⋅ ↑↑

The sensor receives input information x

that comes from any son box through
channel s, and binds the name of the son
box to a3. It can also send output informa-
tion x of a3 to open window.

The information x of open window can
be read , written and closed into M3, and
can also be read , written and closed into
a3.

The sensor reads the information y
coming from a3 and reads it into the open
window, then deliver the received y to a3.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

The sensor sends the information y
coming from c into a3. Then deliver the
information y to a3.

The sensor closes the information y to
a3, and then sends to a3.

This model shows an encapsulation
which encapsulates three middlewares, it
controls the interactions among any mid-
dlewares, the interactions between the
middlewares and environment, and the
interactions between the middlewares and
net. It limits the interactions between the
middlewares and net just through the
channel in and out. By instancing the
connection of M1 to log, M3 to open win-
dow, it obtained the security purpose.

7 Conclusions and further work

This paper puts forward a set of theories
that used for the secure encapsulation of
middlewares. It designs and proves four
encapsulations: the filter encapsulation,
the log encapsulation, the pipeline encap-
sulation and the ternary middlewares en-
capsulation. It is easy to make n-
encapsulation according to the ternary
middlewares encapsulation. These encap-
sulations can keep information exchang-
ing secure among an insecure middleware
with other middlewares, the network, the
operate system, the run-time and the log
etc. And this model can implement dy-
namic and flexible security strategy.

This paper develops many directions
that worth our deep research, and a lot of
deductions and conclusion are waited for
further mining and exploring, also re-
quests further effort to comprehend about
binary system encapsulation. At present,
the four encapsulations haven't yet been
achieved practical applied and deploy-
ment, they are still in the theoretical stage.

8. References

[1] Nayeem Islam, Rangachari Anand,
Trent Jaeger, and Josyula R. Rao

(1997). “A flexible security system
for using Internet content”. IEEE
Software, 14(5):52-59.

[2] Andrew C. Myers (1999). “Jflow
Practical static information flow con-
trol”. In Proceedings of the 26th
ACM Symposium on Principles of
Programming Languages.

[3] Peter Sewell (1997). “Global local
subtyping for a distributed -calculus”.
Technical Report 435, University of
Cambridge.

[4] Peter Sewell (1998). “Global local
sub typing and capability inference
for a distributed -calculus”. In Pro-
ceedings of ICALP’98, LNCS 1443,
pp. 695-706.

[5] Peter Sewell (1999). “A brief intro-
duction to applied”, Lecture notes for
the Mathfit Instructional Meeting on
Recent Advances in Semantics and
Types for Concurrency: Theory and
Practice.

[6] [6] D. Volpano, C. Irvine, and G.
Smith (1996). “A sound type system
for secure flow analysis”. Journal of
Computer Security, pp.167-187.

[7] C.Boutilier, R.Reiter, and B.Price
(2001). “Symbolic dynamic pro-
gramming for first-order MDPs”. In
B.Nebel, editor, Proceedings of the
Seventeenth International Conference
on Artificial Intelligence (IJCAI-01),
pp. 690-700.

[8] C.Boutiliter, R.Reiter, M.Soutchanski,
and S.Thrun (2000). “Decision-
theoretic, high-level agent program-
ming in the situation calculus”. In
proceedings of the Seventeenth Inter-
national Conference on Artificial In-
telligence (AAAI-00).

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

