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Abstract 

Masqueraders invade into users’system 
and impersonate the real users to do 
whatever they want. Unfortunately, fire-
walls or misuse-based intrusion detection 
systems are generally ineffective in de-
tecting masquerades. In this paper an ab-
normal detection method based on one 
class SVM are presented to detect mas-
querade activities using UNIX command 
sets. Firstly the performance of binary 
SVM classifier are studied to illustrated 
why one class SVM are adopted, then to 
improve the performance of one class 
SVM different  feature selection methods 
are studied, experimental results show 
that for abnormal detection using UNIX 
command simplifying raw data and de-
creasing the dimensions of  feature space 
is an effective approach to improve the 
performance of SVM classifiers for mas-
querade detection.  
Keywords:  anomaly detection, SVM, 
Shell command 

1. Introduction 

A masquerader is someone who pretends 
to be another user while invading target 
user’s accounts. For example, a masque-
rader invades an UNIX user’s account 
and execute shell commands on victim’s 
machine. Unfortunately firewalls and   
misuse-based intrusion detection system 
haven’t  the ability to detect such  intru-
sion. In general masquerade detection is a 
form of anomaly detection because what 
we know is the normal behavior of each 
user, the behavior of a masquerader is 

unknown. We assume a masquerader’s 
behavior is  different from that of the real 
user.  
Schonlau and DuMouchel[1] made an 
experiment on masquerade detection us-
ing the UNIX commands.  Various mas-
querade detection methods, such  as hy-
brid markov, sequence match, were 
evaluated, and the accuracy of the most 
effective masquerade detection technique 
did not exceed 70%. Maxion and Town-
send[2] conducted another experiment 
using the same data, they used an updated 
Naive Bayes classifier, the accuracy of 
masquerader detection was improved  
from 39.4% to 61.5% while maintaining 
comparable level of false alarms rate. 
Maxion[3] conducted another experiment 
using the data set referred to as the 
Greenberg data. Different from  Schonlau 
data, Greenberg data contain ‘‘enriched 
commands’’ including name, arguments, 
flag, alias, options, directory, and history. 
He compared the result from truncated 
data set using Naive Bayes classifier with 
that of enriched command data set using 
same classifier. As expected, accuracy of 
masquerader detection improved when 
enriched commands were used.  Kim[4]  
adopted SVM, it is proved that that SVM  
is more effective than Naive Bayes tech-
nique by repeating the experiments con-
ducted by Maxion and Townsend[2] and 
Maxion[3] using the same data sets in the 
similar configurations. 
In this paper we also adopt SVM to detect 
masqueraders as the experiments of 
Schonlau and Maxion. Experiments data 
we adopt is UNIX shell commands, we 
build normal model for each user. For 
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one user, UNIX commands of other users 
can be seen as masquerade activities. We 
mainly focus on the following  problems : 
Which one, two class SVM or one class 
SVM, is more appropriate for masquer-
ade detection? 
How do we extract  data features to im-
prove SVM’s discrimination ability? 

2. Support Vector Machine (SVM)      

In this section, we give a very brief re-
view of SVM and refer the details to [5] 
[6]. Consider N training sam-
ples{x1,y1},...,{xn,yn} where xi is a m-
dimensional feature vector representing 
the ith training sample, and yi  is 1or -1, 
it  is the class label of xi. A hyperplane in 
the feature space can be described as the 
equation wT x + b = 0, where w∈Rm and 
b is a scalar. When the training samples 
are linearly separable, SVM yields the 
optimal hyperplane that separates two 
classes with no training error, and maxi-
mizes the minimum distance from the 
training samples to the hyperplane. 
It is easy to find that the parameter pair 
(w; b) corresponding to the optimal hy-
perplane is the solution to the following 
optimization problem: 
minimize : L(w) = 1/2||w||2 
subject to : yi(wT xi + b)≥1   i = 1..N 
For linearly nonseparable cases, there is 
no such a hyperplane that is able to clas-
sify every training sample correctly. 
From above we can see that SVM is 
originally designed for binary classifica-
tion. 
For One class SVM, the training data 
don’t require to be labled. Only positive 
examples are used in training and testing. 
One class SVM map the data into the fea-
ture space and then try to use a hyper-
sphere to describe the data in feature 
space and put most of the data into the 
hypersphere. This can be formulated into 
an optimization problem. We want the 
ball to be as small as possible while at the 

same time, including most of the training 
data. We only consider the positive points 
and get the objective function in the fol-
lowing form (primal form): 
min R2+(1/vl)∑i.ζi  
s t  ||Φ(Xi)-c||≤ R2+ζi 
The trade off between the radius of the 
hyper-sphere and the number of training 
samples that it can hold is set by the pa-
rameter v∈ [0,1]. When v is small, we 
try to put more data into the “ball”. When 
v is larger, we try to squeeze the size of 
the “ball”. 

3. Masquerade Detection 

3.1. Two class SVM vs. one class SVM 

Masquerade detection is a multi-class 
problem.  Each user is a class,  classifiers 
should be able to discriminate whether 
data are created by a certain user, if the 
data can’t be classified into any user class, 
it is classified as abnormal data or mas-
querade data. 
SVM is originally designed for binary 
classification, so we need to extend two 
class SVM to the multi-class scenario. 
The conventional way is to decompose 
the M-class problem into a series of two-
class problems and construct several bi-
nary classifiers. the most widely used im-
plementations are the one-against-one 
method and the one-against-all method, 
the one-against-all method constructs M 
SVM classifiers with the ith one separat-
ing class i from all the remaining classes.  
To clearly show the performance of two 
class SVM for masquerade detection, in 
this paper the one-against-one method is 
adopted, the one-against-one method con-
structs M(M-1)/2 SVM classifiers, each 
of them can only discriminate two classes.  
For convenience, classifier(i,j) means this 
classifier is built from useri and userj , 
and can discriminate useri from  userj . 
For a testing data, if there exist  M classi-
fiers and the M classifiers assign it to the  
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same user, we decide this data belongs to 
this user class, or it is a masquerade data.  
For one class SVM, classifier construc-
tion  is easy, we only need to construct 
one classifier for each user, this classifier 
can discriminate this user from masque-
raders, if a testing data is not accepted by 
a user’s classifier, it is classified as mas-
querade data.  In section 4 the perform-
ance of those 2 type of SVM are com-
pared and analyzed. 
3.2. Feature Selection  

The key point for masquerade detection is 
how to extract data features from training 
data. Before presenting feature selection 
methods, we give a description of the ex-
perimental data. We use the data provided 
by the Purdue University that collect to-
gether eight UNIX users’ history files. 
Those files record the history shell com-
mands used by user. The data in each file 
consist of shell commands sessions.  Each 
session is a command sequence used by a 
user from his log in until his log out. 
Firstly the data is preprocessed in the fol-
lowing way:  
1.Reserving the name, mark, and meta 
characters of the shell commands. 
2.Replacing the filename, hostname, di-
rectory, website and other information 
with the unified identifiers <n>, where n 
denotes the number of them. 
3.Inserting the identifiers at the beginning 
and the end of a session. 
4.ordering the shell command tokens ac-
cording to the times that they appear in a 
session, then connecting each session one 
by one. 
5.Not appending the timestamps to the 
data. 
The preprocessed data looks like below:  
**SOF**， cd， <1>， ls， -laF， |，
more ， cat ， <3> ， > ， <1> ， exit ，
**EOF** ， **SOF** ， cd ， <1> ，

xquake，&， fg，vi，<1>，mailx，
<1>，exit，**EOF** 

The **SOF** and the **EOF** are the 
beginning and ending symbols respec-
tively,<1> is the identifiers of the file-
name, directory, and other information. 
For convenience, each command is repre-
sented by a token, the token is the same 
for the same command. 
According the above data format, 3 fea-
ture selection approached are designed: 
1.Fix-sized Random Feature Extraction: a 
fix-sized window is used to slide on each 
session data, when window moving, the 
command sequence in the window is a 
feature vector for training or testing. In 
this method two parameters need to be 
considered, one is the window size, the 
other is the sliding step of the window. 
The property of this approach is that fea-
ture extraction is simple, but the meaning 
for each dimension of a feature vector is 
random. 
2.Fix-sized Frequency Feature Extraction: 
this approach is very similar with ap-
proach one, a fix-sized sliding window is 
also used, the frequency of each com-
mand appearing in the window is calcu-
lated. In this approach the length of a fea-
ture vector is the number of token types, 
each dimension of a feature vector repre-
sents the frequency of a token (or com-
mand) appearing in the window. The 
property of this method is that the dimen-
sions of the feature vector is high, it is the 
number of all distinct tokens presented in 
all training and testing sets, but each di-
mension has a fixed meaning. 
3.Class-based Frequency Feature Extrac-
tion: one problem of approach 2 is that 
the dimensions of feature vectors is high, 
it is the number of  all tokens, in our data 
sets the number of tokens is  1936. In pat-
tern recognition we usually think adding 
more features can improve the perform-
ance of classifier, but if the new adding 
features represent the feature of noise, 
this will easily lead classifier overfits   
training data and the classifier can’t be 
generalized. So we take some measures to 
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decrease the dimensions of feature vec-
tors. In this paper according the functions 
of UNIX shell commands they are di-
vided into 135 categories.  By this ap-
proach each dimension of a feature vector 
represents the frequency of a token class 
(or command class) appearing in the win-
dow.  
In section 4 experiments which adopt dif-
ferent feature selection approaches are 
made, and the experimental results are 
analyzed. 

4. Experiments  

To evaluate the model’s performance, we 
define two criteria: True Detection Rate 
(TDR) and Fault Detection Rate (FDR). 
TDR is the ratio of the number of true 
masquerade data detected by classifier to 
the total number of true masquerade data. 
The FDR is the ratio of the number of a 
normal user data classified as masquerade 
data to the total number of a normal user 
data. For a high accuracy classifier, the 
TDR should be high and the FDR should 
be small. 
4.1. Experiments of two class SVM  

We first test the performance of  the two 
class SVM with the one-against-one 
method. We select six users whose com-
mand session number is bigger than 1000. 
two third of the data is used as the train-
ing data, the other is testing data. window 
size is 30, the moving step of window is 6. 
The result is shown in table 4-1. 
Here we give a short illustration on table 
4-1, for example in the first line the test 
user is user1, we use user1’s data to test 
classifiers classifier(u1,u2), …. classi-
fier(u1,u8). For one-against-one classifier, 
only a feature vector of user1 is classified 
by all classifiers of this line, that is  clas-
sifier(u1,u2) ,….classifier(u1,u8),as user1, 
this vector is recognized as user1’s data. 
that is to say classifiers are interdepen-
dency, if one classifier is overfit, the 

whole classification accuracy  will be af-
fected  greatly. In table 4-1 only the test-
ing data of user5 and user6 can be better 
recognized by classifiers. Other user’s 
data almost are recognized as masquerade 
data. That is the reason why we choose 
one class SVM. In the following experi-
ments we all use one class SVM. 
 
Table 4-1 results  of two class SVM 

The TDR of each one-against-one classifier Test 
user U1 U2 U4 U5 U6 U8 
U1  99.8 62.6 23.2 83.4 43.4 
U2 52.4  96.5 20.8 0 68.1 
U4 100 100  100 0 100 
U5 100 100 92.5  96.7 94.1 
U6 87.7 100 100 91.2  96.6 
U8 100 100 0 100 88.9  
 
4.2. Experiments for 3 feature extrac-

tion approaches 

Table 4-2 SVM results for approach 1 
TDR for Each One Class SVM 

(Diagonal is FDR ) 
test 
user

M1 M2 M4 M5 M6 M8 
U1 51.2 48.4 50.4 54.3 49.7 51.2 
U2 50.45 49.3 53.9 63.8 51.8 53.2 
U4 56.0 53.9 44.8 60.8 43.4 45.6 
U5 46.0 45.3 44.8 38.6 45.1 48.3 
U6 60.4 58.9 61.4 70.4 39.2 64.3 
U8 36.2 34.7 37.2 43.5 35.8 74.3 
AV 
TDR

49.8 48.2 49.5 58.5 45.1 52.5 

 

Table 4-3 SVM results for approach 2 
TDR for Each One Class SVM 

(Diagonal is FDR ) 
test 
user 

M1 M2 M4 M5 M6 M8 

U1 12.9 62.4 35.6 51.9 13.2 64.9 

U2 50.3 1.1 26.3 22.3 17.3 43.8 

U4 38.9 33.3 11.2 83.7 28.7 46.4 

U5 49.1 21.9 73.4 9.4 28.2 32.8 

U6 23.0 55.8 66.0 65.8 6.1 23.8 

U8 82.3 77.2 54.5 45.6 14.8 6.9 

AV 
TDR

48.7 50.1 51.1 53.8 20.4 42.3 
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Table 4-4 SVM results for approach 3 

TDR for Each One Class SVM 
(Diagonal is FDR ) 

test 
user 

M1 M2 M4 M5 M6 M8 
U1 7.6 55.1 27.3 40.7 20.9 73.9
U2 48.4 1.9 15.7 30.6 34.2 58.6
U4 27.6 16.7 6.4 80.5 61.5 39.9
U5 41.2 30.3 73.9 11.7 48.4 27.2
U6 30.6 44.4 69.7 56.9 6.9 16.7
U8 82.8 71.5 43.9 30.8 16.7 2.9 
AV  
TDR 

46.1 36.6 46.6 52.1 41.2 43.2

On the above tables Mi represents the 
classifier of user i. Ui represents the test-
ing data of user i. the number at line Ui 
and row Mi is the FDR of classifier Mi. 
For classifier Mi, all the testing data Uj 
(j!=i) can be seen as the masquerade data, 
the number at line Mi and Uj(j!=i) is the 
TDR of classifier Mi corresponding to 
masquerade data set Uj.  AV TDR is the 
average TDR of each classifier, it is the 
average of the TDR in each row.  In table 
4-2 total average FDR is 49.5%, total av-
erage TDR is 50.6%. In table 4-3 the total 
average FDR is 7.9%, total average TDR 
is 44.4%. In table 4-4 total average FDR 
is 6.2%, total average TDR is 44.3%. 
From above table it can be seen that clas-
sifiers using feature extraction approach 1 
almost haven’t the ability to detect mas-
querade data. The performance of classi-
fiers using feature extraction approach 2 
is better than that of approach 1. Though 
it is TDR is relatively low, it is FDR is 
desirable, lower FDR means lower false 
alarm rates which is important in practice.  
Classifiers in table 4-4 basically have the 
same performance as classifiers in  table 
4-3, but the dimensions of feature vectors 
of classifiers in table 4-4 is 135, while the 
dimensions of feature vectors of classifi-
ers in table 4-3 is 1936. This proved that 
approach 3 is more effective compared 
with other approaches. 

5. Conclusion 

In this paper SVM are applied to detect 
masquerade activities. The performance 
of two type of SVM, two class SVM and 
one class SVM, are compared. Due to the 
interdependency among one-against-one 
SVM classifiers, we think one class SVM 
is more appropriate for masquerade de-
tection.  To improve the accuracy  of  one 
class SVM, 3 feature extraction methods 
are presented, the experiments results 
show that Class-based Frequency Feature 
Extraction method can effectively de-
crease the dimension of feature space and 
lower the computation complexity of 
SVM.  
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