
Masquerade Detection Based on One
Class SVM

Yuxin DING1 Ping SUN1 Xiuyue CHEN1 Changan LIU1
1Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

Abstract

Masqueraders invade into users’system
and impersonate the real users to do
whatever they want. Unfortunately, fire-
walls or misuse-based intrusion detection
systems are generally ineffective in de-
tecting masquerades. In this paper an ab-
normal detection method based on one
class SVM are presented to detect mas-
querade activities using UNIX command
sets. Firstly the performance of binary
SVM classifier are studied to illustrated
why one class SVM are adopted, then to
improve the performance of one class
SVM different feature selection methods
are studied, experimental results show
that for abnormal detection using UNIX
command simplifying raw data and de-
creasing the dimensions of feature space
is an effective approach to improve the
performance of SVM classifiers for mas-
querade detection.
Keywords: anomaly detection, SVM,
Shell command

1. Introduction

A masquerader is someone who pretends
to be another user while invading target
user’s accounts. For example, a masque-
rader invades an UNIX user’s account
and execute shell commands on victim’s
machine. Unfortunately firewalls and
misuse-based intrusion detection system
haven’t the ability to detect such intru-
sion. In general masquerade detection is a
form of anomaly detection because what
we know is the normal behavior of each
user, the behavior of a masquerader is

unknown. We assume a masquerader’s
behavior is different from that of the real
user.
Schonlau and DuMouchel[1] made an
experiment on masquerade detection us-
ing the UNIX commands. Various mas-
querade detection methods, such as hy-
brid markov, sequence match, were
evaluated, and the accuracy of the most
effective masquerade detection technique
did not exceed 70%. Maxion and Town-
send[2] conducted another experiment
using the same data, they used an updated
Naive Bayes classifier, the accuracy of
masquerader detection was improved
from 39.4% to 61.5% while maintaining
comparable level of false alarms rate.
Maxion[3] conducted another experiment
using the data set referred to as the
Greenberg data. Different from Schonlau
data, Greenberg data contain ‘‘enriched
commands’’ including name, arguments,
flag, alias, options, directory, and history.
He compared the result from truncated
data set using Naive Bayes classifier with
that of enriched command data set using
same classifier. As expected, accuracy of
masquerader detection improved when
enriched commands were used. Kim[4]
adopted SVM, it is proved that that SVM
is more effective than Naive Bayes tech-
nique by repeating the experiments con-
ducted by Maxion and Townsend[2] and
Maxion[3] using the same data sets in the
similar configurations.
In this paper we also adopt SVM to detect
masqueraders as the experiments of
Schonlau and Maxion. Experiments data
we adopt is UNIX shell commands, we
build normal model for each user. For

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

one user, UNIX commands of other users
can be seen as masquerade activities. We
mainly focus on the following problems :
Which one, two class SVM or one class
SVM, is more appropriate for masquer-
ade detection?
How do we extract data features to im-
prove SVM’s discrimination ability?

2. Support Vector Machine (SVM)

In this section, we give a very brief re-
view of SVM and refer the details to [5]
[6]. Consider N training sam-
ples{x1,y1},...,{xn,yn} where xi is a m-
dimensional feature vector representing
the ith training sample, and yi is 1or -1,
it is the class label of xi. A hyperplane in
the feature space can be described as the
equation wT x + b = 0, where w∈Rm and
b is a scalar. When the training samples
are linearly separable, SVM yields the
optimal hyperplane that separates two
classes with no training error, and maxi-
mizes the minimum distance from the
training samples to the hyperplane.
It is easy to find that the parameter pair
(w; b) corresponding to the optimal hy-
perplane is the solution to the following
optimization problem:
minimize : L(w) = 1/2||w||2
subject to : yi(wT xi + b)≥1 i = 1..N
For linearly nonseparable cases, there is
no such a hyperplane that is able to clas-
sify every training sample correctly.
From above we can see that SVM is
originally designed for binary classifica-
tion.
For One class SVM, the training data
don’t require to be labled. Only positive
examples are used in training and testing.
One class SVM map the data into the fea-
ture space and then try to use a hyper-
sphere to describe the data in feature
space and put most of the data into the
hypersphere. This can be formulated into
an optimization problem. We want the
ball to be as small as possible while at the

same time, including most of the training
data. We only consider the positive points
and get the objective function in the fol-
lowing form (primal form):
min R2+(1/vl)∑i.ζi
s t ||Φ(Xi)-c||≤ R2+ζi
The trade off between the radius of the
hyper-sphere and the number of training
samples that it can hold is set by the pa-
rameter v∈ [0,1]. When v is small, we
try to put more data into the “ball”. When
v is larger, we try to squeeze the size of
the “ball”.

3. Masquerade Detection

3.1. Two class SVM vs. one class SVM

Masquerade detection is a multi-class
problem. Each user is a class, classifiers
should be able to discriminate whether
data are created by a certain user, if the
data can’t be classified into any user class,
it is classified as abnormal data or mas-
querade data.
SVM is originally designed for binary
classification, so we need to extend two
class SVM to the multi-class scenario.
The conventional way is to decompose
the M-class problem into a series of two-
class problems and construct several bi-
nary classifiers. the most widely used im-
plementations are the one-against-one
method and the one-against-all method,
the one-against-all method constructs M
SVM classifiers with the ith one separat-
ing class i from all the remaining classes.
To clearly show the performance of two
class SVM for masquerade detection, in
this paper the one-against-one method is
adopted, the one-against-one method con-
structs M(M-1)/2 SVM classifiers, each
of them can only discriminate two classes.
For convenience, classifier(i,j) means this
classifier is built from useri and userj ,
and can discriminate useri from userj .
For a testing data, if there exist M classi-
fiers and the M classifiers assign it to the

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

same user, we decide this data belongs to
this user class, or it is a masquerade data.
For one class SVM, classifier construc-
tion is easy, we only need to construct
one classifier for each user, this classifier
can discriminate this user from masque-
raders, if a testing data is not accepted by
a user’s classifier, it is classified as mas-
querade data. In section 4 the perform-
ance of those 2 type of SVM are com-
pared and analyzed.
3.2. Feature Selection

The key point for masquerade detection is
how to extract data features from training
data. Before presenting feature selection
methods, we give a description of the ex-
perimental data. We use the data provided
by the Purdue University that collect to-
gether eight UNIX users’ history files.
Those files record the history shell com-
mands used by user. The data in each file
consist of shell commands sessions. Each
session is a command sequence used by a
user from his log in until his log out.
Firstly the data is preprocessed in the fol-
lowing way:
1.Reserving the name, mark, and meta
characters of the shell commands.
2.Replacing the filename, hostname, di-
rectory, website and other information
with the unified identifiers <n>, where n
denotes the number of them.
3.Inserting the identifiers at the beginning
and the end of a session.
4.ordering the shell command tokens ac-
cording to the times that they appear in a
session, then connecting each session one
by one.
5.Not appending the timestamps to the
data.
The preprocessed data looks like below:
SOF， cd， <1>， ls， -laF， |，
more ， cat ， <3> ， > ， <1> ， exit ，
EOF ， **SOF** ， cd ， <1> ，

xquake，&， fg，vi，<1>，mailx，
<1>，exit，**EOF**

The **SOF** and the **EOF** are the
beginning and ending symbols respec-
tively,<1> is the identifiers of the file-
name, directory, and other information.
For convenience, each command is repre-
sented by a token, the token is the same
for the same command.
According the above data format, 3 fea-
ture selection approached are designed:
1.Fix-sized Random Feature Extraction: a
fix-sized window is used to slide on each
session data, when window moving, the
command sequence in the window is a
feature vector for training or testing. In
this method two parameters need to be
considered, one is the window size, the
other is the sliding step of the window.
The property of this approach is that fea-
ture extraction is simple, but the meaning
for each dimension of a feature vector is
random.
2.Fix-sized Frequency Feature Extraction:
this approach is very similar with ap-
proach one, a fix-sized sliding window is
also used, the frequency of each com-
mand appearing in the window is calcu-
lated. In this approach the length of a fea-
ture vector is the number of token types,
each dimension of a feature vector repre-
sents the frequency of a token (or com-
mand) appearing in the window. The
property of this method is that the dimen-
sions of the feature vector is high, it is the
number of all distinct tokens presented in
all training and testing sets, but each di-
mension has a fixed meaning.
3.Class-based Frequency Feature Extrac-
tion: one problem of approach 2 is that
the dimensions of feature vectors is high,
it is the number of all tokens, in our data
sets the number of tokens is 1936. In pat-
tern recognition we usually think adding
more features can improve the perform-
ance of classifier, but if the new adding
features represent the feature of noise,
this will easily lead classifier overfits
training data and the classifier can’t be
generalized. So we take some measures to

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

decrease the dimensions of feature vec-
tors. In this paper according the functions
of UNIX shell commands they are di-
vided into 135 categories. By this ap-
proach each dimension of a feature vector
represents the frequency of a token class
(or command class) appearing in the win-
dow.
In section 4 experiments which adopt dif-
ferent feature selection approaches are
made, and the experimental results are
analyzed.

4. Experiments

To evaluate the model’s performance, we
define two criteria: True Detection Rate
(TDR) and Fault Detection Rate (FDR).
TDR is the ratio of the number of true
masquerade data detected by classifier to
the total number of true masquerade data.
The FDR is the ratio of the number of a
normal user data classified as masquerade
data to the total number of a normal user
data. For a high accuracy classifier, the
TDR should be high and the FDR should
be small.
4.1. Experiments of two class SVM

We first test the performance of the two
class SVM with the one-against-one
method. We select six users whose com-
mand session number is bigger than 1000.
two third of the data is used as the train-
ing data, the other is testing data. window
size is 30, the moving step of window is 6.
The result is shown in table 4-1.
Here we give a short illustration on table
4-1, for example in the first line the test
user is user1, we use user1’s data to test
classifiers classifier(u1,u2), …. classi-
fier(u1,u8). For one-against-one classifier,
only a feature vector of user1 is classified
by all classifiers of this line, that is clas-
sifier(u1,u2) ,….classifier(u1,u8),as user1,
this vector is recognized as user1’s data.
that is to say classifiers are interdepen-
dency, if one classifier is overfit, the

whole classification accuracy will be af-
fected greatly. In table 4-1 only the test-
ing data of user5 and user6 can be better
recognized by classifiers. Other user’s
data almost are recognized as masquerade
data. That is the reason why we choose
one class SVM. In the following experi-
ments we all use one class SVM.

Table 4-1 results of two class SVM

The TDR of each one-against-one classifier Test
user U1 U2 U4 U5 U6 U8
U1 99.8 62.6 23.2 83.4 43.4
U2 52.4 96.5 20.8 0 68.1
U4 100 100 100 0 100
U5 100 100 92.5 96.7 94.1
U6 87.7 100 100 91.2 96.6
U8 100 100 0 100 88.9

4.2. Experiments for 3 feature extrac-

tion approaches

Table 4-2 SVM results for approach 1
TDR for Each One Class SVM

(Diagonal is FDR)
test
user

M1 M2 M4 M5 M6 M8
U1 51.2 48.4 50.4 54.3 49.7 51.2
U2 50.45 49.3 53.9 63.8 51.8 53.2
U4 56.0 53.9 44.8 60.8 43.4 45.6
U5 46.0 45.3 44.8 38.6 45.1 48.3
U6 60.4 58.9 61.4 70.4 39.2 64.3
U8 36.2 34.7 37.2 43.5 35.8 74.3
AV
TDR

49.8 48.2 49.5 58.5 45.1 52.5

Table 4-3 SVM results for approach 2
TDR for Each One Class SVM

(Diagonal is FDR)
test
user

M1 M2 M4 M5 M6 M8

U1 12.9 62.4 35.6 51.9 13.2 64.9

U2 50.3 1.1 26.3 22.3 17.3 43.8

U4 38.9 33.3 11.2 83.7 28.7 46.4

U5 49.1 21.9 73.4 9.4 28.2 32.8

U6 23.0 55.8 66.0 65.8 6.1 23.8

U8 82.3 77.2 54.5 45.6 14.8 6.9

AV
TDR

48.7 50.1 51.1 53.8 20.4 42.3

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

Table 4-4 SVM results for approach 3

TDR for Each One Class SVM
(Diagonal is FDR)

test
user

M1 M2 M4 M5 M6 M8
U1 7.6 55.1 27.3 40.7 20.9 73.9
U2 48.4 1.9 15.7 30.6 34.2 58.6
U4 27.6 16.7 6.4 80.5 61.5 39.9
U5 41.2 30.3 73.9 11.7 48.4 27.2
U6 30.6 44.4 69.7 56.9 6.9 16.7
U8 82.8 71.5 43.9 30.8 16.7 2.9
AV
TDR

46.1 36.6 46.6 52.1 41.2 43.2

On the above tables Mi represents the
classifier of user i. Ui represents the test-
ing data of user i. the number at line Ui
and row Mi is the FDR of classifier Mi.
For classifier Mi, all the testing data Uj
(j!=i) can be seen as the masquerade data,
the number at line Mi and Uj(j!=i) is the
TDR of classifier Mi corresponding to
masquerade data set Uj. AV TDR is the
average TDR of each classifier, it is the
average of the TDR in each row. In table
4-2 total average FDR is 49.5%, total av-
erage TDR is 50.6%. In table 4-3 the total
average FDR is 7.9%, total average TDR
is 44.4%. In table 4-4 total average FDR
is 6.2%, total average TDR is 44.3%.
From above table it can be seen that clas-
sifiers using feature extraction approach 1
almost haven’t the ability to detect mas-
querade data. The performance of classi-
fiers using feature extraction approach 2
is better than that of approach 1. Though
it is TDR is relatively low, it is FDR is
desirable, lower FDR means lower false
alarm rates which is important in practice.
Classifiers in table 4-4 basically have the
same performance as classifiers in table
4-3, but the dimensions of feature vectors
of classifiers in table 4-4 is 135, while the
dimensions of feature vectors of classifi-
ers in table 4-3 is 1936. This proved that
approach 3 is more effective compared
with other approaches.

5. Conclusion

In this paper SVM are applied to detect
masquerade activities. The performance
of two type of SVM, two class SVM and
one class SVM, are compared. Due to the
interdependency among one-against-one
SVM classifiers, we think one class SVM
is more appropriate for masquerade de-
tection. To improve the accuracy of one
class SVM, 3 feature extraction methods
are presented, the experiments results
show that Class-based Frequency Feature
Extraction method can effectively de-
crease the dimension of feature space and
lower the computation complexity of
SVM.

6. References

[1] Schonlau Matthias, etc, “Computer
intrusion: detecting masquerades”,
Statistical Science ,vol.16, no.1, 2001,
pp.58-74.

[2] Maxion Roy, Townsend Tahilia,
“Masquerade detection using trun-
cated command line”, Proc. of inter-
national conference on dependable
systems and networks, pp. 219-
228,2002.

[3] Maxion Roy, “Masquerade detection
using enriched command lines”, Proc.
of international conference on de-
pendable systems and networks , pp.
5-14, 2003.

[4] H.S. Kim, S.D. Cha “Empirical
evaluation of SVM-based masquerade
detection using UNIX commands”
Computers & Security, vol.24, no.2,
pp.160-168,2005.

[5] V.N. Vapnik, “An Overview of Sta-
tistical Learning Theory”, IEEE Trans.
on Neural Networks, vol. 10, no. 5,
pp. 988-999, Sept. 1999.

[6] C. Cortes and V.N. Vapnik, “Support
Vector Networks”, Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

