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Abstract 

Mixed multi-unit combinatorial auctions 
provide two types of bids as XOR-bids 
and OR-bids, which make them popular 
for resource allocation in marketplace. 
However, the problem of maximizing the 
revenue of auctioneers is a NP-complete 
problem. In this paper, we propose an 
improved partheno-genetic algorithm for 
solving this problem. The algorithm re-
peals crossover operators and implements 
the functions of crossover and mutation 
by partheno-genetic operators. New heu-
ristics and a worst-removed operator are 
designed for improving the profit of the 
solution. Simulation results show that the 
algorithm has great searching speed and 
achieves good performance in large scale 
problems.  

Keywords: multi-unit combinatorial auc-
tions, winner determination problem, 
partheno-genetic algorithm, OR-bids, 
XOR-bids 

1. Introduction 

Multi-unit combinatorial auctions are a 
popular type of auctions, which allow 
bidders bidding multiple units on one 
item in a bid and bidding on combina-
tions of items. With the wildly applica-
tions of e-commerce, multi-unit combina-
torial auctions (MUCA) provide fully 
automated electronic negotiation for a 
variety of task and resource allocation in 

complex marketplace, for example, trans-
formability relationships among goods, 
online double auction and so on [1-4].  

Mixed multi-unit combinatorial auc-
tions (MMUCA) provide two types of 
bids as XOR-bids and OR-bids [5-7]. 
These two new kinds of bids allow bid-
ders to submit additive or exclusive bids 
over collection of combinations. For ex-
ample, a bidder wants to bid (A, B) or (B, 
C) on three items (A, B, C) in an auction, 
but he doesn’t want them all. In basic 
MUCA, he can choose only one item 
combination and submits (A, B) or (B, C) 
in a single bid. In MMUCA, he can use 
XOR-bids to express his preference on 
item combinations by submitting a XOR-
bids as “(A, B) XOR (B, C)”.  XOR-bids 
and OR-bids help bidders expressing their 
preference more exactly than before, and 
achieve more efficient allocations than 
traditional MUCA.  

In combinatorial auctions (CA), find-
ing the revenue maximizing set of win-
ning bids is the first difficult challenge 
[8], called winner determination problem 
(WDP). The WDP in CA is a complex 
computational problem and NP-complete 
[9]. The researches for WDP in single-
unit combinatorial auctions (SUCA) are 
plenty. Sandholm and we have solved the 
problem in SUCA well [6, 10-12]. How-
ever, the researches for WDP in MUCA 
are few. Some researches have tried to 
solve the problem in different ways. 
Vinyals provided an algorithm to gener-
ate artificial data and an integer pro-
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gramming implementation for MMUCA 
in CPLEX [7]. Gonen and Lehmann in-
vestigated the use of branch-and-bound 
techniques and characterized the theoreti-
cally optimal method for sorting bids [13]. 
Leyton-Brown developed a branch-and-
bound algorithm for the problem, which 
incorporated a specialized dynamic pro-
gramming procedure [14]. 

In this paper, we propose an improved 
partheno-genetic algorithm (PGA) to find 
solutions with a worst-removed operator 
and three partheno-genetic operators in-
stead of complex operators of crossover 
and mutation. Then new heuristics are 
designed for evaluating the bids and ap-
plied in the worst-removed operator to 
improve the profit of the solution. At last, 
we test the PGA in two data distribution 
and the PGA has great searching speed 
and achieves good performance in large 
scale problems. 

2. Problem Description 

In MMUCA, each bidder i submits a bid 
set as type

iB , not a single bid. In type
iB ,   

type denotes that it is a XOR-bids or OR-
bids. type

iB contains a group of bids, for 

example, },{ 21 ii
XOR
i bbB =  indicates 

that bidder i wants one of {bi1, bi2} to be 
chosen, but not both. And then 

},{ 21 ii
OR
i bbB =  indicates that bidder i 

wants bi1, bi2, or both to be chosen. 
Bid bij denotes that bidder i bid on an 

item combination. And bij is a pair (sij, pij), 
where pij is the price of the bid, and sij is a 
vector containing the numbers of re-
quested units of each item. sij= (rij1, 
rij2, … rijk, … ), rijk  is the number of re-
quested units of  item k in bid bij, where 0
≤rijk≤ qk. If bid bij doesn’t bid on item k, 
then rijk =0. 

Assume that there is one seller (or sev-
eral sellers acting in concert) and multiple 
bidders. The goal is to maximize the 

seller’s revenue. The model of MMUCA 
is as follows: 
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In above model, m is the number of 

items to be auctioned, n is the number of 
bidders in MMUCA. qk is the available 
units of item k. In equation (3), type

iB  is 

the number of bids in the bid set. 
Equation (2), (3) and (4) are constraints 

of the model, equation (4) denotes that if 
bid bij is chosen into the solution, xij = 1 
else xij = zero. Equation (2) ensures that 
the sum of requested unit of each item 
should be not greater than the number of 
available. Equation (3) ensures that no 
more than one bid in XOR-Bids can be 
chosen. 

3. Our Algorithm 

The problem of MMUCA belongs to 
combinatorial optimization problems. 
Genetic algorithms (GA) are capable of 
solving these problems, such as traveling 
salesman problem, flow-shop problem 
and so on [15, 16]. Different from GA, 
partheno-genetic algorithms (PGA) use 
partheno-genetic operators to implement 
the genetic operation of crossover and 
mutation. Partheno-genetic operators are 
SWAP, REVERSE and INSERT [17, 18]. 
These operators replace the special cross-
over operators for solving combinatorial 
optimization problems, such as PMX, OX 
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and CX [19]. And they can restrain im-
mature convergence phenomenon and 
don’t require initial population to be var-
ied [17]. To increase the profit of the so-
lution, we design a worst-removed opera-
tor to remove the worst gene and try to 
generate a better solution. And we design 
some heuristics to evaluate the bids and 
apply them into the worst-removed opera-
tor for finding the worst bid in the current 
solution. We call the PGA with heuristics 
and the worst-removed operator as im-
proved partheno-genetic algorithm 
(IPGA).  
 
3.1. Genetic operation 

In our IPGA, the natural number string is 
used as the gene representation. A chro-
mosome represents an allocation. The fit-
ness is the sum price of the bids in the 
solution. 

Each chromosome is generated from a 
particular sequence of all bids. We gener-
ate a random sequence Q on all bids 
firstly, and then take the bid from Q one 
by one, until the end of Q. If the bid is not 
violated the equation (2) and (3) in the 
model MMUCA, add it into the solution. 
The procedure of chromosome generation 
has been studied in [11].  

In genetic operation, each new popula-
tion is generated by three partheno-
genetic operators working on chromo-
somes in the current population. These 
three partheno-genetic operators have 
been studied in [10, 11] 
 
3.2. Heuristics for Bids Evaluation 

A feasible solution is generated by select-
ing bids one by one from Q in turn until 
the end of Q. It is obviously that the bids 
in the front of Q have more chance to be 
chosen than the bids in the back. To ap-
proach the optimal solution, good bids 
should be placed in the front of Q as far 
as possible while the bad bids should be 
closer to the end of Q. Profit is a direct 

way to evaluate a bid. Different from 
SUCA [10], the evaluation of bids in 
MUCA need to consider the price of the 
bid, the number of item bid on, the re-
quested unit of each item, the available 
unit of each item, and relations between 
all these factors. The evaluating strategy 
is that the fewer item a bid bidding on, 
the smaller proportion of the request unit 
and available unit of each item,  and the 
higher the price is, the better the bid is. 
The evaluation function is as follows: 
 
Heuristic C(bij)k, the proportion of the 
request unit in bid bij to the available unit 
of each item 

  0  ,,...2,1   )( ≠== ijk
ijk

k
kij rmk

r
q
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Heuristic G(bij)k, pij is the product of the 
price of  bid bij and the heuristic denotes 
the contribution of bij on each item 
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Heuristic W(bij),  N(bij) is the number of 
the items, which bid bij bid on, and the 
heuristic denotes the average contribution 
of bij on all items, which it bid on.  
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3.3. Worst-removed operator 

To each chromosome, the worst-removed 
operator is used to find the worst gene, 
and remove it. Equally, it is also used to 
find out the worst bid in a solution and 
remove the worst bid out. The usage of 
the operator is not only finds the worst 
bid, but also increases the profit of the 
solution. Let X be the current solution, 
and it is generated from the bid sequence 
Q. The procedure of the worst-removed 
operator working on X is as follows: 
Step1. Calculate W(bij) for all bids in X 
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Step2. Select the bid with minimum W(bij)  
as the worst bid bwst. 
Step3. Move bwst to the end of Q, and 
then generate new bid sequence Q’ 
Step4. Generate a new solution X’ from 
new sequence Q’ 
Step5. If the profit of X’ is higher than X, 
replace X with X’ and output X’ as a new 
chromosome, else keep X no change. 
 
3.4. Algorithm Steps 

After all works have been introduced as 
above, the procedure of the IPGA for 
MMUCA is as follows: 
Step1. Initialize parameters as Table.1  
Step2. Produce initial random population  
Step3. If the stopping criterion is satisfied, 
go to Step7; else continue. 
Step4. Perform three partheno-genetic 
operations on the kth generation Ak and 
generates Bk. 
Step5. Perform worst-removed operation 
on Bk and generate Ck. 
Step6. Perform the roulette wheel propor-
tional selection and quintessence select-
ing strategy on Ck, and obtain the next 
generation Ak+1, then go to Step3. 
Step7. Stop and output the best solution. 
 
Table.1 Global Parameters 
NG Number of generations 
PN, Population size 
Ps Probability of SWAP operator 
Pr Probability of REVERSE operator 
Pi. Probability of INSERT operator 
Pw Probability of Worst-Removed 

 

4. Experimental Results 

Our IPGA is programmed in C language 
and run on two different data distribu-
tions: Random and Weighted. In Ran-
dom distribution, the items, the requested 
unit and the price of each bid are set ran-
domly. In Weighted distribution, the 
price of a bid is associated with the num-

ber of items and requested units. The 
more items contained in the bid and the 
more units requested by the bid, the 
higher its price is. In all data, XOR-bids 
must contain at least two bids.  

We test IPGA on execution time and 
deviation rate. Deviation rate denotes the 
deviation between the average result Vaver 
and the max result Vmax. Each instance 
runs ten times, and deviation rate is cal-
culated as following formula:  
Deviation rate= (Vmax - Vaver) / Vmax 
*100%                                                  (8) 

Each bar in the following histograms 
represents an average over 10 problem 
instances. Each instance is test with dif-
ferent random seeds 
 
4.1. Execution Time 

Fig.1 shows that IPGA has good search-
ing speed. In large problem size as 50 
items and 500 bids, the execution time of 
IPGA is less than 1 minute. The time cost 
on weighted distribution is higher than 
that on random distribution in large prob-
lem size. 
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Fig. 1: Execution time of IPGA on random 
and weighted distribution 
 
4.2. Deviation Rate 

Fig.2 shows that IPGA achieves small 
deviation rate on random distribution. 
Even in large problem size, the deviation 
rate of IPGA is less than 2%. Fig.3 shows 
that when the problem size becomes large, 
deviation rate on weighted distribution is 
higher than 2%. In large problem size, 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                4



deviation rate on weighted distribution is 
less than 4%. 
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Fig. 2: Deviation rate of IPGA on random dis-
tribution 
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Fig. 3: Deviation rate of IPGA on weighted 
distribution 
 

5. Conclusion and Further Work  

In this paper, we propose IPGA for solv-
ing the problem in MMUCA. The IPGA 
uses partheno-genetic operation and re-
strain the immature convergence phe-
nomenon.  Heuristics are designed for 
bids evaluation and applied in the worst-
removed to increase the profit of the solu-
tion. It is well known that the problem in 
CA is related with knapsack problems 
(KP) closely [20]. In the further, we will 
apply our algorithm for solving other 
problems related with KP. 
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