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Abstract. In this study, thermal property of the carbon nanotube (CNT) fibers from chemical vapor 
deposition synthesis was investigated. Thermal conductivity of the CNT fibers was measured using 
the “T”-type method; a value of 75.9 WK−1m−1was obtained at room temperature. Temperature 
dependence of the thermal conductivity of the CNT fibers was also measured; the thermal 
conductivity first increased and then decreased in the temperature range 80–320 K. Moreover, 
thermal conductivity of the CNT fibers increased after the treatment with an HCl solution. 

Introduction 
   Carbon nanotubes (CNTs) with unique one-dimensional nanotube structures possess super 
strength[1], high electrical[2] and thermal conductivities[3],and multifunctional properties. CNT 
fibers, as the oriented assembly of CNTs, have several potential applications such as in artificial 
muscles[4],supercapacitors[5], ultrahigh conductivity fibers[6],stretchable conductors[7], and 
high-performance structural fibers[8] due to the outstanding performance of individual CNTs. 
   Currently, CNT fibers are synthesized by four main routes:1)spinning from a CNT 
solution[9],2)spinning from an aligned CNT array[10],3)spinning from the CNT aerogel formed by 
chemical vapor deposition(CVD) reactor[11,12], and 4)twisting/rolling from a CNT film[13]. CNT 
fibers obtained from the CVD method are the most suitable for large-scale commercial production 
because of their facile synthesis and a stable continuous spinnable process. At present, the 
fabrication of CVD CNT fibers has been optimized; however, their properties have not been studied. 
The first requirement for the applications of CVD CNT fibers is to understand their properties, 
particularly thermal property. Therefore, the thermal property of CVD CNT fibers was investigated 
in this study.  

Experimental  
  CNT fibers were fabricated by the CVD synthesis method. A mixture of carbon source and 
catalyst was injected into a high-temperature reactor along with H2 stream, affording continuous 
fibers at the bottom of the reactor. The fiber was pulled out of the reactor after on-line densification 
with acetone. A more detailed description of the synthesis process can be found elsewhere[12]. 
  The as-spun fiber was treated with HCl as follows: The fiber was immersed in an HCl solution 
for ∼30 min, followed by drying in an oven. The cross-section and surface morphologies of CNT 
fibers were characterized using an SEM (JSM-6700F); further characterizations were carried out 
using a transmission electrical microscope (TEM, Tecnai-G20 F20) and Raman spectrometer 
(Renishaw).  
   The measurement principle of the thermal conductivity can be found in supporting materials. 
The thermal conductivity was measured using a “T”-type device in a thermostat bath. Molecular 
and vacuum pumps were used for the continuous removal of air in the thermostatic bath, thus 
decreasing the pressure to 10−4 Pa. Simultaneously, a liquid nitrogen circulation system and 
microcontrolled heater were used to adjust the temperature inside the bath. The voltage and current 
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were measured using a digital multimeter. A more detailed description can be found in 
literature[14]. 

Results and discussion 
The structure of as-spun CNT fiber 

 
Figure. 1. a) Scanning electron microscopy (SEM) image of the cross-section of CNT fiber. b) SEM image of the surface of fiber. c) Transmission 

electron microscopy image of the cross-section of CNT bundle. d) Raman spectrum of fiber. 

  The fibers are continuous and soft, like cotton yarns. Three hierarchy structures were observed in 
the SEM and high-resolution TEM. At the macroscopic scale, the fibers are hollow, with a fiber wall 
of 1–10 μm (Fig.1a).The fiber wall consists of large quantities of CNT bundles in the diameter 
range 10–100 nm, and the bundles are slightly aligned with the fiber axis(Fig.1b). At the 
microscopic scale, the bundles comprise of stacked large-diameter double-wall CNTs (Fig.1c).The 
crystallization of the fiber was characterized by the Raman spectrum(Fig.1d).The intensity ratio of 
G to D(IG/ID)was found to be 4.3,indicating that the obtained CNT fibers have less defect than the 
CNT fiber from array[16]. 

Thermal conductivity of CNT fibers 
1) Thermal conductivity of CNT fibers at room temperature 

  The CNT fibers from CVD synthesis process have a thermal conductivity of 75.9 WK−1m−1 at 
room temperature, which is comparable to the reported values, 50 and 19 WK−1m−1, of CNT fibers 
from array[17] and a typical solution[18], respectively, but lower by one order of magnitude(600 
WK−1m−1) than the CNT fibers synthesized by improved spinning from a solution[6].This can be 
attributed to the worse packing of the CNT fibers in this study. However, the thermal conductivity is 
much different from both the theoretical and experimental values for individual CNT. Notably, the 
thermal conductivity of individual CNT can reach 6600 WK−1m−1 in theory[19], while the 
experimental thermal conductivity values range from 1400 to 3500 WK−1m−1[15,20,21]. This is 
probably because the interface between the adjacent CNTs plays a dominant role in the thermal 
conductivity of any assembly of CNTs. The contact between CNTs provides the defects within the 
fiber that enhance phonon scattering and in turn reduce the phonon mean free path. 

2) Temperature dependence of thermal conductivity of CNT fiber 
  The thermal conductivity of the CNT fibers was measured at different temperatures from 76 to 
320K. The thermal conductivity values versus temperature are plotted in Figure 2. The thermal 
conductivity of the as-spun fiber first increased from 41.4 WK−1m−1 at 80 K to 85.5 WK−1m−1 at 
225K and then decreased to74.1 WK−1m−1 at 320 K; thus, the crossover temperature was observed 
at 225K. This temperature dependence of the as-spun fiber is different from those of the CNT fibers 
from array[17] and a solution[18].In both cases, the thermal conductivity increases with temperature, 
and no crossover temperature was observed in the tested temperature range. However, the 
temperature dependence of the as-spun fiber is similar to that of the fiber synthesized by improved 
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spinning from a solution[6], where the thermal conductivity also first increased and then decreased 
with a crossover temperature at 220 K. In general, two factors contribute to the thermal conductivity 
of CNT fibers: the thermal conductivity of CNTs themselves and the thermal conductivity due to the 
contact between the adjacent CNTs. The thermal conductivity due to the contact between the 
adjacent CNTs should not change with temperature because the contact itself has no relation with 
the temperature. Therefore, the temperature dependence of the thermal conductivity of the CNT 
fibers can be attributed to the individual CNTs themselves. This view is supported in the 
literature[20], where the thermal conductivity of individual CNTs also first increased and then 
decreased in a range of temperature. Moreover, the crossover temperature was at ∼270K,consistent 
Figure 2 Temperature dependence of thermal conductivity of the as-spun fiber with the value (225K) 
of the CNT fibers in this study. 

 
Figure 2 Temperature dependence of thermal conductivity of the as-spun fiber 

3)Thermal conductivity of CNT fibers after HCl treatment  
The CNT fibers were treated with HCl, and the temperature dependence of the thermal 

conductivity was measured as shown in Figure 3. The thermal conductivity of the HCl-treated CNT 
fibers first increased and then decreased with temperature, similar to the as-spun fiber. However, the 
HCl-treated CNT fibers exhibited a higher thermal conductivity throughout the temperature range 
than the as-spun fiber. In particular, the HCl-treated CNT fibers had a thermal conductivity of 138 
WK−1m−1 at room temperature, an increase by 84% compared to the as-spun fiber. The result 
indicates that HCl can significantly enhance the thermal conductivity of CNT fibers. The reason is 
not clear. This is probably because HCl removes the Fe particles, the residual catalyst, formed 
during the synthesis of CNT fibers; therefore, the phonon scattering caused by the Fe particles was 
reduced, thus increasing the thermal conductivity. 
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Figure 3  Temperature dependence of the HCl-treated CNT fibers and comparison with the profile of the as-spun fiber 

Conclusion  
The CNT fibers from CVD synthesis process consist of stacked CNT bundles and have a 

thermal conductivity of 75.9 WK−1m−1at room temperature, much lower than that of individual 
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CNTs. This is due to the contact between CNTs. The temperature dependence of the thermal 
conductivity of the CNT fibers first increased and then decreased with temperature; this behavior 
can originate from the individual CNT. The thermal conductivity of the CNT fibers could be 
enhanced by treating with HCl, probably because HCl partially removed the residual Fe particles. 
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