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Abstract. The eigen-solutions of the crack tip fields for an anti-plane crack in functionally graded 
piezoelectric materials (FGPMs) are studied. Different from previous analyses, all material 
properties of the FGPM are assumed to be power-law function of y perpendicular to the crack. The 
crack surfaces are electrically impermeable and loaded by anti-plane shear tractions and in-plane 
electric displacements. The higher order crack tip fields of FGPMs are obtained by the 
eigen-expansion method. The stress intensity factor and electric displacement intensity factor are 
obtained explicitly.  

Introduction  
Piezoelectric materials have been widely used in modern technology due to their 

electromechanical coupling behavior. To improve the reliability of the modern structures, the 
concept of FGPMs has been introduced recently. Due to their brittleness, the fracture problems of 
FGPMs has been attracted extensive attention in order to meet the demand of high strength and high 
temperature applications. Ou [1] studied the internal crack problem located within one functionally 
graded piezoelectric strip. The crack is normal to the edge of the strip and the material properties 
vary along the direction of crack length. Kwon [2] analyzed the electrical nonlinear behavior of an 
anti-plane shear crack in a functionally graded piezoelectric strip by using the strip saturation model 
within the framework of linear electro-elasticity. Hsu [3] investigated the fracture behavior of an 
arbitrarily oriented crack in a FGPM subjected to anti-plane mechanical and in-plane electric loads. 
Zhang [4] studied the behavior of four parallel non-symmetric permeable cracks with different 
lengths in a FGPM plane subjected to anti-plane shear stress loading by the Schmidt method. To our 
knowledge, the electro-elastic behavior of a crack in FGPMs with power gradation has not been 
studied in the open literatures. It is with this in mind that we report the present work. In the present 
paper, we attempt to obtain the higher order mechanical and electric crack tip fields by eigen- 
expansion method. 

Basic equations 

Consider a crack of length 2L in FGPM planes, as shown in Fig.1. The FGPM is poled in the z 
direction and isotropic in the xoy plane. It is loaded by anti-plane shear tractions and in-plane 
electric displacements, the crack is electrically impermeable and the crack surfaces are traction free. 
We assume that the material properties are represented by the following case 

 44 440 15 150 11 110(1 ) ,    (1 ) ,   (1 )k k kc c y e e y yλ λ e e λ= + = + = +  (1) 

where 44c is the shear modulus,  150e is the piezoelectric coefficient, 110ε is the dielectric parameter 

at 0y = .  
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Fig.1Anti-plane crack in FGPMs 

 
 

 

The governing equations can be written as 
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is the two-dimensional Laplace operator. 

The higher order crack-tip fields 
The displacement component w  and the electric potential φ  can be expanded as follows 
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where, ( )iw θ  and ( )iφ θ  are eigen-functions. 

Substitute Eq.(3) into Eq.(2). According to the linear independence of 3/2r− , 1r− , 
1/2r−  ,…, /2 2ir − ,…, the system of ordinary differential equations are obtained.  
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where 
w
φ
 =   

w . 

In the case of electrically impermeable crack, the crack surfaces are free of electric charges and 
the electric displacement inside the crack is zero. As the crack surface is free, the boundary 
conditions are 

 0,   0zy yD
θ π θ π

σ
=± =±

= =  (5) 

Further, they can be expressed as 
 ( ) 0        ( ) 0i iw π φ π′′ ± = ± =  (6) 
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Solving the system of ordinary differential equations, we can obtain the results 
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where ijA  and ijB are the undetermined coefficients. 
Substituting Eq. (7) and (8) into Eq.(3), the displacement component w  and the electric 

potential φ  are obtained. 
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Then，the stress and the electric displacement components can be obtained 
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Further，the stress and the electric displacement components can be obtained. The mode III 
stress intensity factor (SIF) and electric displacement intensity factor (EDIF) of the crack tip are 
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defined as 
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Conclusion 
The higher order mechanical and electric crack-tip fields for power FGPMs are obtained by the 

methods of eigen-expansion in this paper. The results showed that the non-homogeneous material 
parameters k  and λ  first appeared in the third order fields, 2k  and 2λ  in the fifth order ones. 
It is clear that non-homogeneous material parameters strongly affect the higher order items of the 
fields. The explicit expression of stress intensity factor and electric displacement intensity factor are 
presented.  
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