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Abstract 

In this work, we try to build a regression tool to partially replace the use of CPU-time consuming atomic-level 
procedures for the calculation of point-defect migration energies in Atomistic Kinetic Monte Carlo (AKMC) 
simulations, as functions of the Local Atomic Configuration (LAC). Two approaches are considered: the Cluster 
Expansion (CE) and the Artificial Neural Network (ANN). The first is found to be unpromising because of its high 
computational complexity. On the contrary, the second provides very encouraging results and is found to be very 
well behaved. 
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1. Introduction 

Phase transformation in general, and solute precipitation 
in particular, are spontaneous physical phenomena that 
may occur during operation in structural materials, e.g. 
steels, and dramatically modify their mechanical 
properties, thereby threatening the safety of the affected 
component. Models reliably describing the kinetics of 
these phenomena are therefore of importance for the 
safe exploitation of industrial nuclear power plants. For 
example, the formation of copper-rich precipitates and 
nanovoids under neutron irradiation is widely accepted 

to be the main cause of hardening and embrittlement of 
nuclear Reactor Pressure Vessel (RPV) steels during 
operation1, as a consequence of their acting as obstacles 
to dislocation motion. Experimental evidences (see e.g. 
Refs. 2-4) have highlighted that any model for the 
prediction of RPV steel hardening versus radiation dose 
(which is the basic requirement for the RPV lifetime 
assessment) needs to be able to account as correctly as 
possible for the build-up of Cu precipitate and Cu-
vacancy complex density.  
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Atomistic Kinetic Monte Carlo (AKMC) simulations5-11 

are among the best suited tools for studying the 
precipitation of Cu in Fe via a vacancy migration 
mechanism, as a subpart of the general study of RPV 
steels long-term evolution after decades of operation. 
AKMC is a compromise between Molecular Dynamics 
(MD), that considers events at the atomic time and 
length scale, and coarse-grained tools, such as Object 
KMC12 and rate theory13-14, that are necessary to extend 
the simulation to the macroscopic scale. AKMC 
techniques retain the atomic level description, but 
reduce the number of possible events to the very basic 
mechanisms of single-defect diffusion and can thus 
encompass a timeframe (much) larger than MD. 
 
Figure 1 shows an example of AKMC simulation. The 
cubic box is filled with matrix Fe atoms, and contains a 
small percentage of Cu. The atoms are arranged in a 3D 
rigid grid of coordinates that corresponds to the Body 
Centred Cubic (BCC) crystallographic structure. Several 
sites are however empty, corresponding to vacancies. At 
each step of the calculation, one of them is moved as 
shown on figure 2. Each vacancy has eight possible 
destinations, corresponding to the eight corners of the 
BCC cells. One of all candidate jumps, whose number is 
eight times the number of vacancies present in the 
system, is selected according to its probability, using the 
Monte Carlo sampling method15.  
 
 
The vacancy jump probability, pj, is calculated using the 
classical transition rate theory, i.e. using an Arrhenius-
like expression for the jump frequency, that describes 
the jump as a thermally activated process: 
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Here ν0,j is a prefactor that is assumed to be constant 
and of the order of the Debye frequency for Fe (in the 
present case), kB is Boltzmann’s constant, T is the 
absolute temperature and E is the Vacancy Migration 
Energy (VME), which is the key parameter to be 
assessed and the focus of the present work. A precise 
definition and description of the latter are given in 
section 2. For the moment, it is important to know that 
the VME depends on the Local Atomic Configuration 
(LAC) and that it can be rigorously calculated with MD-
type tools.† This is, however, a very time-consuming 
operation, that cannot possibly be undertaken at every 
AKMC step. Our project is thus aimed at partially 
replacing this rigorous calculation by a regression tool, 
trained to predict the VME on the basis of a limited 
number of MD calculated examples. Two possibilities 
have been envisaged and are reported in sections 3 and 
4. The objective is to be able to calculate the VME 
hundreds of billions of times within a reasonable time 

                                                
† Note that, technically speaking, it is not full MD that is used for the 
VME calculation, but algorithms based on the use of an interatomic 
potential that are easily implemented in an MD code. There exist a 
number of them (see Ref. 9), but here we shall not enter the detail of 
these algorithms and will generically speak, for simplicity, of MD 
calculations. Note also that calculations of the same type, more 
reliable although much more expensive in terms of CPU-time, can 
also be performed using ab initio, i.e. quantum-mechanics-based, 
methods. 

 
 

Fig. 1. AKMC simulation box with about 700,000 atoms (1.4% 
Cu). (left) Initial state with the copper atoms randomly distributed. 
(right) An intermediate state (after billions of AKMC steps). 

 
Fig. 2. One AKMC step corresponding to the migration of one 
vacancy (in reality, it is rather one of its neighbouring atoms that 
migrates to it). The figure shows the migration of the hatched 
atom to the vacancy, situated on the front bottom left corner of its 
BCC cubic cell, in plain lines. The dashed line shows the BCC 
cell of destination. 
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frame, with as few simplifications as possible, because 
of the crucial role that the VME plays in the time 
increment of the AKMC, and thus on the prediction of 
the kinetics of the simulated process. 
 
 

 
 
In order to keep the approximation tool qualities into 
control, a Fuzzy Logic (FL) based risk assessment 
method has been developed, too, to determine the 
probability that a VME prediction is subjected to an 
unreasonably high error. Such a tool allows the 
construction of the evolutionary system shown on figure 
3. The rejected VME are MD calculated, before adding 
this new information in the existing database. Once the 
latter has been filled with a certain amount of new 
entries, both the approximation tool and its FL risk 
assessment module can be automatically re-trained. 
Such a strategy is promising to enhance the VME 
prediction qualities during the AKMC. The FL module 
is described in section 5. 
 
Physical considerations suggesting the convenience of 
this scheme and a few preliminary results, obtained with 
first rudimentary algorithms, with only a few hints 
about the architecture of the numerical tools, have been 
already reported in Ref. 16. Here we focus on the 

detailed description and discussion of the algorithmic 
part, presented in its latest form. 

2. The Vacancy Migration Energy 

The VME is the difference between the largest energy 
encountered during the process leading to the exchange 
between a vacancy and a nearby atom (saddle point) and 
the initial energy of the system, as illustrated on figure 
4. The VME can be estimated in a number of ways. 
Empirical formulas based on the total energy difference 
(∆E) (see Ref. 5, 6, 9-11, 17.) are the simplest to apply, 
but also the most approximate ones, as discussed also in 
Ref. 16. Rigorous calculations can be undertaken with 
methods such as “drag”, “dimmer” or “Nudged Elastic 
Band” ones. The interested reader can find a general 
survey on that topic in Ref. 18. The method we used 
was a drag refined with cubic splines interpolation. The 
total energy of the system is calculated with MD 
performing a quench of the crystal.  
 
The VME varies with the Local Atomic Configuration 
(LAC), as illustrated on figure 2. The A, B1, … , F 
atoms shown in addition to the migrating one are the 
first nearest neighbors (1nn) of both its initial and final 
positions. They can be of several chemical types, or 
even be another vacancy. Depending on their nature, the 
corresponding VME will be different. The LAC can 
thus be coded under the form of an array of integers :  
 
1nn LAC = [ J  A  B1  B2  …  E2  E3  F ]                (2) 

 

 
Fig. 3. The evolutionary VME prediction system. 

! 

Em  is the 
MD calculated VME, whereas 

! 

Em
*  is the prediction made by 

the approximation tool. The pre-buffer and the VME 
database are implemented under the form of a binary tree. 

 

 
Fig. 4.  Vacancy Migration Energy (VME). x is the 
dimensionless advancement coordinate along the atom 
displacement path. The y-axis of the figure is the total 
energy of the system in electron volts. EM is a cubic spline 
interpolation of the saddle point in the minimum energy path 
found by the drag method. 
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Each entry corresponds to one particular site around the 
jump and the value it takes depends on the nature of the 

object found therein. The length of the LAC string 
depends on the accuracy of the correlation. For 
example, the 1nn approximation shown on figure 2 
considers 15 atomic sites. Taking further nearest 
neighbors into account makes this number increase. The 
list of possible values that the integers may take 
depends on the physical problem at hand. We talk about 
the FeAB_Xnn problem when, in addition to the Fe 
matrix and 1 migrating vacancy, both the A and B 
species may be encountered and participate in defining 
the LAC and when the Xnn approximation is used, i.e. 
the LAC is extended to include the Xth shell of 
neighboring sites. 
 
Table 1 summarizes the problems of interest for the 
study of the FeCu binary alloy.  It is clear that the 
number of possible LACs explodes quickly and that a 
full calculation with MD is totally unfeasible. Note that, 
in practice, the inherent symmetries of the BCC 
configuration allow the total number of LACs to be 
reduced by a factor 6 at the most. This “trick”, however, 
obviously does not remove the underlying complexity 
mentioned earlier.  
 
Our problem is consequently to correlate the VME with 
respect to 15 to 39 integer (categorical) type input 
variables. The output is a smooth real type function that 
takes values from 0.0‡ to, say, 1.5 eV, with the largest 
accuracy possible. The parameters of the drag and 

                                                
‡ Negative values are meaningless as when introduced in (1) they may 
lead to unreasonably large jump probabilities. Physically, negative 
values would imply that the transition is not thermally activated, but 
spontaneous, which means that the initial state is ill-chosen. 

quenching methods have been selected as a compromise 
between speed and accuracy.  
 

3. Cluster Expansion 

 
A cluster expansion for an alloy can be viewed as a 
generalized Ising Model19. Any property of the alloy 
that only depends on the atomic configuration, the total 
energy in particular, may be expressed by means of such 
an expansion. Its application to energy barriers (VMEs) 
has been proposed e.g. in Ref. 20. More precisely, the 
occupation variables of the LAC allow a description of 
the energy barrier as an expansion in terms of 
polynomials : 
 

! 

ECE = J0 + J iSi + J ijSiS jpairs"sites" + J ijkSiS jSk + ...
triplets"   (3) 

 
where Si are the LAC entries and Jij are the coefficients 
of the basis functions that can be fitted e.g. to the MD 
calculated VME’s for a variety of different LAC’s. 
Figure 5 shows the types of many-body interactions 
considered in an expansion, up to the 3nn. The Jij 
coefficients thus represent the contribution of each of 
these interactions to the VME. 
 
 
 
Of course, only a finite number of interactions can be 
involved in the expansion. The choice of which 

 
Fig. 5.  Types of many-body interactions considered for the 3nn 
approximation. 

 

Table. 1.  Problems of interest for our application. 
The bold values in the last column are those for 
which a full calculation with MD and tabulation is 
feasible. As an order of magnitude, one VME 
calculation with MD takes about one minute on 
modern personal computers. 

Problem Num sites Num LACs 

FeCu1nn ; FeVac1nn 15 215 = 32768 

FeCu2nn ; FeVac2nn 21 221 = 2097152 

FeCu3nn ; FeVac3nn 39 239 = 5.50e+11 

FeCuVac1nn 15 315 = 1.43e+7 

FeCuVac2nn 21 321 = 1.05e+10 

FeCuVac3nn 39 339 = 4.05e+18 
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interaction is more essential to a particular expansion is 
an open question. 
 
The fit of the expansion of each LAC to the 
corresponding MD calculated VME is performed by 
adjusting the coefficient Jij, minimizing the least-square 
error between the calculated energy and the predicted 
energy proposed by the expansion.  This minimization 
can be undertaken with a traditional optimization 
method like Single Value Decomposition21 (SVD) based 
on pseudo-inverse matrix, stochastic methods like 
Genetic Algorithms22 (GA), or non-linear parameter 
fitting like Levenberg-Marquardt23 (LM). 
 
It was decided, as a first approach, to study the 
performance of the cluster expansion method for the 
simple binary 1nn problems. Even for this simple 
situation it was necessary to impose a truncation on the 
expansion by considering only many body interaction 
consisted of pairs or triplets of atoms, in order to avoid 
the number of terms to explode. 
 

3.1 Binary problems 

 
This section presents our results with the FeCu1nn and 
FeVac1nn problems (see Table 1), where the Si 
occupation variables may thus take only two different 
values. The number of free parameters to be optimized 
was 

! 

15 +C15
2

+C15
3  = 575. The percentage of points used 

for training was 20%. The optimization method applied 
in this work was GA (SVD and LM gave similar 
results). 
 
Figure 6 shows the results obtained with the only 
consideration of pairs. The cluster expansion VME 
predictions are clearly well behaved for the FeCu1nn 
problem, even with such a simple model. The additional 
consideration of triplet interaction, however, allows to 
reduce the average error committed, as shown on figure 
7. On the contrary, the cluster expansion predictions 
quality is much less satisfying for the FeVac1nn 
problem. 
 
 
 
 

 

 
 

 
Fig. 6.  Cluster expansion VME predictions for 
the FeCu1nn (up) and FeVac1nn problems 
(down), with only pair interactions taken into 
consideration. The average errors are respectively 
0.53% and 7.12%. 

  

 
 

 
Fig. 7. Cluster expansion VME predictions for 
the FeCu1nn (up) and FeVac1nn problems 
(down), with pair and triplet interactions taken 
into consideration. The average errors are 
respectively 0.29% and 3.61%. 
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3.2. Ternary problem 

 
The problem considered here is the more general and 
more complicated FeCuVac1nn (see Table 1), where 
both copper atoms and vacancies may be encountered in 
the LAC.  
 
A solution was imagined to find a way to take into 
account the possibility for some interactions, in the 
cluster expansion formulation, to be more important 
than others24. Of course there is no way to identify these 
interactions on-the-fly during the optimization process, 
so it was decided to design a GA based intelligent 
system, depicted on figure 8, in order to identify the 
relevant many-body interactions of a given problem and 
to obtain the adjustment of the coefficients for these 
interactions. 
 
The individuals of the GA population represent different 
ways to construct a cluster expansion, or different many 
body interactions to consider. A population of different 
templates, or possible cluster expansions, is created in 
the first generation. A training set consisting of local 
atomic configurations is presented to each individual 
(training set 1), and these configurations are “translated” 

to a cluster expansion according to the scheme of this 
individual. A SVD algorithm finds the appropriate 
coefficients, minimizing the least square error on the 
training set 1. With the adjusted coefficients, a second 
training set (training set 2) is translated as the cluster 
expansion proposed by the individual, the least square 
error is calculated and used as a measure of how good 
this individual, or this particular set of many-body 
interactions, is able to produce a good prediction. As the 
genetic algorithm evolves, only individuals that 
represent suitable expansions would survive. 
 
The results obtained with the FeCuVac1nn problem are 
shown on figure 9. The performance of the GA based 
model is surprisingly good compared to the preliminary 
results we obtained with the traditional model. 
 

3.3. Conclusion on CE 

 
The Cluster expansion approximation tool has been 
successfully applied to simple VME prediction 
problems. A GA-based model has been devised to 

 
Fig. 8. GA based Cluster Expansion optimization.  

 

 
 

 
Fig. 9. Cluster expansion VME predictions for 
the FeCuVac1nn with pairs interactions (up) and 
with triplets interactions (down). The average 
errors are respectively 15.72% and 11.74%. 
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determine the most important interactions to be taken 
into account, enabling the number of terms in the 
expansion to be limited. 
 
However, the potential of the cluster expansion seems 
limited because of the high complexity that the 
optimization problem takes when the number of atomic 
sites to be considered is increased. For example, the 
consideration of the 2nn problems (21 sites in the LAC) 
requires the determination of around 10,000 free 
parameters if triplet interactions are introduced in the 
expansion. An optimization problem of this size is 
known in GA terminology as Large Parameter 
Optimization Problem (LPOP) and requires a large 
population size and many generations to converge. The 
computational complexity, therefore, quickly explodes. 
For this reason and considering that, at the same time, 
we were obtaining better results with a hybrid fuzzy – 
neural network framework (see following sections), it 
was decided to abandon this model in favor of a more 
efficient and robust approach. 
 
 

4. Artificial Neural Networks 

 
Artificial Intelligence (AI) is the combination of 
algorithms, data and software used to develop computer 
systems that can be said to be intelligent. Here, the 
defining feature of intelligence is the capability of 
learning from past experience and solving problems 
when important information is missing, so as to be able 
to handle complex situations and to react correctly to 
new ones. There are many different computational 
models that are considered branches of the artificial 
intelligence field, each one suitable to a different kind of 
problem. For our particular application, the feed-
forwards Artificial Neural Network (ANN) is 
particularly well suited, as it provides a general 
framework for representing non-linear functional 
mappings between a set of input variables and a set of 
output functions25. It is a universal approximator in the 
sense that a Multi-Layer Perceptron (MLP) can 
approximate any continuous multivariate function to 
any desired degree of accuracy, provided that a 
sufficiently large number of hidden neurons are 
available26-27. 
 

4.1. Predictions quality 

 
Figure 10 shows the ANN prediction qualities for binary 
and ternary 3nn problems. The average error committed 
is 0.51% for FeCu3nn and 3.37% for FeCuVac3nn (with 
maximum 7 vacancies in the LAC). The correlation 
coefficient r2 is larger than 0.99 in both cases. The ANN 
is thus clearly outperforming the cluster expansion, not 
only because the error committed is much smaller, but 
also because the training procedure is much less 
computational time demanding. 
 
The next sections present the experiments we made to 
study different ANN architectures and training 
algorithms. 
 

4.2. Experimental conditions 

 
Two MLP architectures have been considered. The first 
is the classical fully interconnected mono-hidden layer 
network without bypass connections, using sigmoid 

 
 

 
 

Fig. 10. ANN Prediction qualities for the 
FeCu3nn (left) and for the FeCuVac3nn (right) 
(maximum 7 vacancies) problems.  
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activation functions, as widely described in Ref. 25-26 
and by many others. It will be denoted as Fixed 
Architecture MLP (FAMLP) from now on. The second 
is Fahlman-Lebiere’s Cascade Correlation Network 
(CNN) as described in Ref. 28. It is, contrary to the 
FAMLP, a constructive algorithm where hidden units 
are added in successive layers. 
 
Two algorithms have been considered for the FAMLP 
training. The first one is the steepest-descent Resilient 
Propagation (RPROP) used in batch mode, as described 
in Ref. 29. The second one is the Levenberg-Marquardt 
(LM), described for example in Ref. 25, which is an 
approximation of the second order Newton method and 
that does not require the computation of the Hessian 
matrix. The synaptic connections where initialized at 
random between ±2.4/F (F is the node fan-inn26 as 
recommended in Ref. 26).  
 
The CCN training algorithm was changed compared to 
the original Fahlman-Lebiere’s. Instead of proceeding to 
the addition of a new hidden node in two phases, all 
synapses linked to it are trained all together with the 
output ones, with a classical training algorithm (chosen 
to be LM). The reason is that is seems to us that the 
original Fahlman-Lebiere training scheme is best suited 
for classification problems using the 1-of-c coding for 
the output signal. Furthemore, the QuickProp30 
algorithm originally proposed for CCN training28 didn’t 
give more satisfactory results than RPROP and LM and 
is therefore not considered in the present paper. 20 
candidate nodes where considered before any new 
hidden unit addition. The synapses initialization strategy 
was the same as for FAMLP training, and the activation 
functions where chosen at random amongst the sigmoid, 
Gaussian and hyperbolic tangent.  
 
 

4.3. Experiment 1 

 
All architectures and training algorithms have been 
tested on the FeCu1nn and FeCu2nn problems. The 
FAMLP was trained with several numbers of hidden 
nodes. The experiments were run 20 times. 
 
Figure 11 shows the experiments for the FeCu2nn 
problem. Figure 12 summarizes the results for both the 

FeCu1nn and the FeCu2nn problems. The following 
observations can be made : 
• The best-suited number of hidden nodes for the 

FAMLP is not easy to determine, because of the 
substantial variance of the final MRE. In fact, it is 
absolutely necessary to run all experiments several 
times, which is bad news from the computational 
point of view. 

 

 
 

 
 

 
 

Fig. 11. FeCu2nn trained with FAMLP and CCN. 
The error bars show the max observed MRE over the 
20 trainings performed. T is the number of training 
examples. 
 
 

 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               347



 Artificial Intelligence applied to AKMC 
 

• For FAMLP, the RPROP algorithm does not reach 
as low MRE as LM, except if the training set is 
large enough. LM is thus always preferable§.  

• The final MRE variance is unsurprisingly lower for 
CCN than FAMLP. 

• The CCN architecture is in general not capable of 
reaching the same MRE as the FAMLP, despite its 
advantage to construct the network automatically. 
In-depth architectures are thus apparently less 
appropriate to the VME correlation problem than 
the use of one single hidden layer. 

 
 
 
It is thus clear that reaching a reasonably low MRE is 
rather easy, whereas fine-tuning is not conceivable 
without quite a number of training experiments.  
 

4.4. Experiment 2 

 
Figure 13 shows the experiments performed with the 
3nn problems. Only the CNN architecture was tested. 
The experiments were run 20 times. 
 
The comparison of figure 12 and 13 shows clearly that 
the ANN need in training examples to converge to the 
lowest possible MRE behaves well with the problem 
complexity. Shifting from 1nn to 2nn or 3nn has not 
made this number explode. The same observation holds 
for the comparison of the FeVac and FeCuVac problems 
to the FeCu one. This is a very important point vis-à-vis 
the extension of the methodology to more complex 
problems. 
 

4.5. Conclusion on ANN 

 
The ANN is clearly a very promising tool for the VME 
regression versus LAC. Low mean residual errors of 
predictions and very good correlation coefficients are 
indeed very easily obtained. However, ANN fine-tuning 
is not an easy issue, because quite a lot of training 

                                                
§ In practice, LM requires much less training epochs to converge than 
RPROP or other first order methods. However, The actual training 
time can be reversed for large systems because of the complexity of 
the LM : 

! 

" (W3+TW2) where W is the number of synapses and T the 
number of training examples. Anyway, LM was by far the fastest for 
our application. 

 
 

 
Fig. 12. Minimum MRE observed amongst all 
training experiments performed. 

 

 
 

 
Fig. 13. Experiments with the 3nn problems. 

 
 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               348



N. Castin et al. 
 

experiments are in practice necessary before the best 
possible ANN performance can be reached. 
 
Consequently, it seems to us that the CCN training 
scheme is a good starting point to make the first NN 
training trials on a new problem, in order to determine 
the number of training points required to reach the 
lowest possible MRE. Then a long series of FAMLP 
trainings, with the LM algorithm applied on different 
network architectures, are to be performed as a second 
step for fine-tuning. 
 
 
 

5. Risk assessment on the VME approximation 

As already mentioned, a Fuzzy Logic31 (FL) system has 
been designed to assess the uncertainty32 inherent to the 
use of the ANN and to evaluate the "risk"33 associated 
with its use instead of the full calculation, so as to be 
able to build an integrated system, capable of feedback. 
Figure 14 shows an example of ANN trained for the 
FeCu1nn problem and of associated risk assessment 
scheme. Despite the reasonably low MRE, the error 
committed for some cases may be rather large, up to 
17.5% for this particular example. The objective of the 
FL would then be to identify, on the basis of both the 
LAC and the corresponding predicted VME, whether 
the correlation error is probably larger than a certain 
Error Rejection Threshold (ERT).  
 
 
The FL system we developed follows a Sugeno model34-

35 and produces an output that is either 0 or 1, 
respectively meaning “acceptance” or “rejection” of the 
ANN predicted VME. The FL inputs are various 
information extracted from the LAC. For example, the 
variables for the FeCu1nn problem were :  
• The total number 

! 

NCu  of copper atoms in the LAC. 
• The difference 

! 

"CCubetween the number of Cu 
atoms that are 1nn of the jumping atom and the 
number of Cu atoms that are 1nn of the jumping 
vacancy. 

• The ANN prediction 

! 

Em
*  of the migration energy. 

Triangular-shaped sets are used for the fuzzification part 
of the Sugeno model. 
 

An automated Genetic Algorithm (GA) based learning 
scheme has been developed in order to generate the FL 
system definition on the basis of the full VME available 
database. The GA optimization variables are the central 
coordinates of the triangular sets on the FL inputs, as 
shown on figure 15. The rules’ conclusions are 
determined after a passage in the VME database. If at 
least one point that has an unacceptable error fulfils a 
certain rule, its conclusion is automatically chosen to be 
1 (“rejection”). The conclusion is 0 (“acceptance”) 
otherwise.  The GA objective function is :  
 

! 

f = (1+R1) " (1+R2 ) +1 (4) 
 
Where R1 is the proportion of acceptable ANN 
predictions wrongly rejected by the FL and R2 is the 
proportion of unacceptable predictions wrongly 

 
 

Fig. 14. ANN trained for the FeCu1nn problem. The 
MRE is 1.06%. The ERT is set at 6%. 

 
 

Fig. 15. FL sets and rules determination by the 
GA. 

! 

µ is the relevancy to belong to a certain 
FL set. 
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accepted. The GA task is thus to select the fuzzy sets as 
properly as possible, so as to isolate in what conditions 
precisely is the ANN failing at producing a good VME 
prediction. 
 
The classical Sugeno inference scheme has been 
modified in order to improve the FL performance. The 
FL output O is calculated by : 
 

! 

O = round(o) ; o =

Hr "Cr "Tr
r

#

Hr "Tr
r

#
 (5) 

 
Where Hr is the rule relevancy and Cr is its conclusion. 
The Tr coefficient (named trust index) has been added. 
It is the maximum relevancy observed by the GA that 
has led to the conclusion Cr for the rule r. For example, 
on figure 15, the conclusion Cr of all rules involving the 
set number 3 on the FL input considered is “rejection”. 
Only one observation leads to that conclusion, but it was 
lying very close to the set peak. In that case, the 
“rejection” conclusion for the rule r can be used with a 
high degree of trust, and so 

! 

Tr = µa
 is very close to 1. 

On the other hand, the conclusion of all rules r* 
involving the set number 2 are also “rejection”, but with 
a much lower level of confidence. In this case, 

! 

Tr* = µC  
is close to 0. The r* rule has, consequently, fewer 
chances to induce wrong rejections of acceptable VME 
predictions. 
 
The complexity of the GA objective function is rather 
large. Two passages in the overall VME database are 
indeed required : the first serves to determine the rules’ 
conclusions (as depicted on figure 15) and the second 
serves to calculate the function f. The application of 
such a method is very time-consuming if the database is 
large, which is the case in practice for the 2nn and 3nn 
problems. In order to reduce that complexity, we have 
introduced a clustering operation on the FL learning 
data, depicted on figure 16. Points having a similar 
value for all FL inputs are removed, as long as they lie 
on the same side of the ERT. Only one point is left, and 
is assigned with a weight factor that corresponds to the 

number of points removed plus one. This factor is then 
taken into account when the R1 and R2 members of the f 
function are calculated. In practice, points above the 
ERT are not clustered (it is affordable since they are not 
very numerous) and the clustering operation is very fast 
thanks to the help of a binary tree. The size of the FL 
learning table is in turn tremendously reduced and the 
GA optimization is consequently much faster. An 
appropriate choice of the selection tolerances shown on 
figure 16 allows the effect of clustering to be made 
negligible on the real FL abilities to isolate the 
unacceptable ANN predictions. 
 

 
Figure 17 : Evolution with he ERT of the best-
obtained R1 for the problem of Fe-Cu 1nn . R2 has 
immediately vanished during the GA optimization 
in all cases. 

 

 

 
 
Fig. 16. Clustering operation on the FL learning data, around 
the two circled points, with respect to 1 FL input. In practice, 
points are removed only if the illustrated condition is fulfilled 
for all the FL inputs.  
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The last undefined feature of the FL system is the 
appropriate selection of the ERT. In fact, we can see it 
as a compromise between ANN accuracy and AKMC 
speed. The ERT is actually not a priori chosen, but 
rather determined as low as possible with the constrain 
to keep R1 reasonably limited, as shown on figure 17. 
The choice of a large ERT is consequently less rigorous 
in the ANN risk assessment but summons MD 
calculations less often, and reversely.  
 

6. Example of AKMC results with the use of ANN 

 
Figure 18 shows the results of thermal annealing 
experiments computed with a small AKMC box 
containing 1.4% of Cu and 1 single vacancy. The VME 
was correlated with an MLP having a MRE of 0.5%. No 
FL Risk assessment was applied. Satisfactory 
predictions of the Cu solubility limit in Fe were 
obtained at different temperatures. 
 

7. Conclusion and outlook 

 
In this work, we have reported about our effort to 
develop a regression tool to partially replace a costly 
“molecular-dynamics” calculation of the local-atomic-
configuration-dependent vacancy migration energy in 
an atomistic kinetic Monte Carlo scheme, where the 
local atomic configuration is presented under the form 
of an array of tens of categorical integers. We have in 
the first place envisaged a cluster expansion approach. 

The latter has however been abandoned for an artificial 
neural network, that has been proven to be more robust, 
well behaved and promising for future developments of 
the project. 
 
Our future objective is to continue the application of 
this method to more complicated situations. First, the 
number of atomic sites taken into consideration must be 
increased for a better description of the physics, and 
more chemical species are to be included in the model. 
Secondly, in order to tackle irradiation problems, the 
atomistic kinetic Monte Carlo model must be able to 
consider the migration of another type of point-defect, 
i.e. the self-interstitial. It is a more complicated event 
than the vacancy migration, mainly because of the more 
extended and anisotropic strain-field than for a vacancy, 
which enhances and complicates its interaction with 
neighboring atoms. 
 
Our future work will thus have to face not only a larger 
number of artificial-neural-network input variables, but 
also a more complicated mapping between these inputs 
and the point defects migration energies that have to be 
predicted. 
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