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Abstract

A direct method to construct polynomial integrals for third order ordinary difference
equation (O∆E) w(n + 3) = F (w(n), w(n + 1), w(n + 2)) and fourth order O∆E

w(n+4) = F (w(n), w(n+1), w(n+2), w(n+3)) is presented. The effectiveness of the
method to construct more than one polynomial integral for N-th order O∆E is also
briefly discussed.

1 Introduction

The discrete nonlinear systems governed by both ordinary difference equations or map-
pings and partial difference equations or lattice equations have drawn much attention by
researchers working under different areas of applied science [1, 2, 3, 5, 7, 9, 10]. Since
discrete systems governed by difference equations are more fundamental than the con-
tinuous ones described by differential equations their study becomes essential which will
lead to the development of a general theory of discrete and in particular nonlinear differ-
ence equations. Even though there exists no unique definition of integrability considerable
number of analytical methods have been formulated by different groups in recent years to
deal with integrability [4, 7, 8, 10, 11, 12, 13, 16, 18, 19, 20, 21, 22, 24, 25] and signifi-
cant advancement has already been made for the second order both for autonomous and
nonautonomous cases [5, 7, 9, 10, 17, 19, 20, 25]. We take the working definition of inte-
grability, here, the one which is related with the existence of sufficient number of integrals
of an O∆E. An integral (also referred to as conserved quantity) of O∆E is a function
that is not identically constant but is constant on all solutions of it. An autonomous N-th
order nonlinear O∆E is said to be integrable if it admits (N-1) functionally independent
integrals. Note that if a difference equation is measure preserving in dimension N and has
(at least) (N − 2) independent integrals then it has a (degenerate) Poisson structure, so
defines a symplectic map on each 2D level set of these integrals [6]. Given an autonomous
N-th order nonlinear O∆E there exists no systematic analytic technique to derive its inte-
grals enabling one to investigate its integrability. Recently a direct method was proposed
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for N -th order autonomous difference equation to construct rational integrals and several
new integrable difference equations of higher order were identified [23]. In this article we
present a method to construct polynomial integrals through third and fourth order O∆E

[ see 14,15 for a different method]. The effectiveness of the method is also discussed for N

-th order O∆E.

The plan of the article is as follows. In §2 we describe the method, which involves
factorisation, through third order autonomous O∆E wn+3 = F (wn, wn+1, wn+2), wn =
w(n),wn+1 = w(n+1) etc. to derive 2 polynomial integrals. In §3 we extend it for fourth-
order autonomous O∆E wn+4 = F (wn, wn+1, wn+2, wn+3) and identify F admitting 2
independent integrals. In §4 we present a brief summary of our results. The effectiveness
of the method is also discussed for N -th order O∆E in the Appendix.

2 Construction of integrals for third-order autonomous dif-

ference equation

Consider an autonomous third order O∆E having the form

wn+3 = F (wn, wn+1, wn+2) or w3 = F (w0, w1, w2). (2.1)

Hereafter, we denote w0 = wn, w1 = wn+1, ..., wN = wn+N unless otherwise specified.
Assume that equation (2.1) admits an integral I(w0, w1, w2) having the form

I(w0, w1, w2) =

3
∑

j=1

[A1j(w1)w
2
2 + A2j(w1)w2 + A3j(w1)]w

3−j
0

. (2.2)

The integrability condition I(w0, w1, w2)− I(w1, w2, w3) = 0 leads to a quadratic equation
in w3

F1(w1, w2)w
2
3+F2(w1, w2)w3−[F4(w1, w2)w

2
0+F5(w1, w2)w0+F6(w1, w2)−F3(w1, w2)] = 0.

(2.3)

where

Fi(w1, w2) =
3

∑

j=1

Aij(w2)w
3−j
1

, i = 1, 2, 3,

Fk+3(w1, w2) =

3
∑

j=1

Ajk(w1)w
3−j
2

, k = 1, 2, 3.

Hereafter we denote Fi(w1, w2) as Fi for the remaining section unless otherwise specified.
Equation (2.3) can be factorised as

(

w3 + w0 +
F5 + F2

2F1

)(

w3 − w0 +
F2 − F5

2F1

)

= 0 (2.4)
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provided

A11(w2)w
2
1 + A12(w2)w1 + A13(w2) = A11(w1)w

2
2 + A21(w1)w2 + A31(w1) (2.5a)

and

(F5 + F2)(F5 − F2) = 4(F6 − F3)F1 (2.5b)

Thus we obtain,

w3 = −w0 −
F2 + F5

2F1

, (2.6)

w3 = w0 −
F2 − F5

2F1

. (2.7)

Solving equation(2.5a) yields

A11(w2) = a1w
2
2 + a2w2 + a3, (2.8a)

A21(w2) = a2w
2
2 + b2w2 + c2, (2.8b)

A31(w2) = a3w
2
2 + b3w2 + c3, (2.8c)

A12(w2) = a2w
2
2 + b2w2 + b3, (2.8d)

A13(w2) = a3w
2
2 + c2w2 + c3, (2.8e)

where a1, a2, a3, b2, b3, c2 and c3 are arbitrary constants. Equation (2.5b) suggests that it
can be solved for two distinct possibilities:

(i) F5 = F2 and F6 = F3, (2.9)

(ii) F5 6= F2 and F6 6= F3. (2.10)

The conditions given in equation (2.9) can be rewritten respectively as

A12(w1)w
2
2 − A21(w2)w

2
1 = A22(w2)w1 − A22(w1)w2 + A23(w2) − A32(w1), (2.11)

A13(w1)w
2
2 − A31(w2)w

2
1 = A32(w2)w1 − A23(w1)w2 + A33(w2) − A33(w1). (2.12)

Making use of the forms for A11(w2), A12(w2), A13(w2), A21(w2) and A31(w2) given in
equations (2.8a)-(2.8e) in (2.11) and (2.12) we obtain

A22(w2) = b2w
2
2 + e2w2 + e3, (2.13a)

A23(w2) = b3w
2
2 + e3w2 + f3, (2.13b)

A32(w2) = c2w
2
2 + e3w2 + f3, (2.13c)

A33(w2) = c3w
2
2 + f3w2 + j3, (2.13d)

where e2, e3, f3 and j3 are arbitrary constants. Thus we obtain a third order difference
equation

w3 = −w0−
(a2w

2
2 + b2w2 + c2)w

2
1 + b2w1w

2
2 + e2w1w2 + e3w1 + b3w

2
2 + e3w2 + f3

(a1w
2
2

+ a2w2 + a3)w2
1

+ a2w1w
2
2

+ b2w1w2 + b3w1 + a3w
2
2

+ c2w2 + c3

(2.14)
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with one integral

I1 = [(a1w
2
1 + a2w1 + a3)w

2
0 + (a2w

2
1 + b2w1 + b3)w0 + a3w

2
1 + c2w1 + c3]w

2
2

+[(a2w
2
1 + b2w1 + c2)w

2
0 + (b2w

2
1 + e2w1 + e3)w0 + b3w

2
1 + e3w1 + f3]w2

+(a3w
2
1 + b3w1 + c3)w

2
0 + (c2w

2
1 + e3w1 + f3)w0 + c3w

2
1 + f3w1. (2.15)

We would like to mention that equation (2.14) can also be rewritten as

w3 = −w0 −
(α1w1w2 + α2w1 + α3w2 + α4)(γ1w1w2 + γ2w1 + γ3w2 + γ4)

(α1w1w2 + α2w1 + α3w2 + α4)(β1w1w2 + β2w1 + β3w2 + β4)
(2.16)

by choosing the constants a1, a2, a3, b2, b3, c2, c3, e3 and f3 appropriately. For example,
equation (2.14) becomes

w3 = −w0 −
2β3w1w2 + γ2(w1 + w2) + γ4

β1w1w2 + β3(w1 + w2) + γ2 − α4β3

(2.17)

provided

a1 = β2
1 , a2 = 2β1β3, a3 = β2

3 ,

b2 = (β1γ2 + 2β2
3), c2 = b3 = γ2β3, c3 = α4β3(γ2 − α4β3),

e2 = (2γ2β3 + β1γ4 + 2α4β
2
3), e3 = β3(α4γ2 + γ4), f3 = α4γ4β3, j3-arbitrary

and the integral (2.15) becomes

I1 = (β1w0w1 + β3(w0 + w1) + α4β3)[(β1w0w1 + β3(w0 + w1) + γ2 − α4β3)w2

+2β3w0w1 + γ2(w0 + w1) + γ4]w2 + β3(w1 + α4)(β3w0w1 + γ2w1

+(γ2 − α4β3)w0 + γ4)w0 + α4β3(γ2 − β3α4)w
2
1 + α4β3γ4w1. (2.18)

In order to construct second integral I2 we use the other possibility given in equation (2.10).
It is clear from equation (2.5 a) that A11(w1), A12(w1), A13(w1), A21(w1) and A31(w1)
are quadratic polynomials. However, equation (2.5b) suggests that A22(w1), A23(w1),
A32(w1) and A33(w1) may be quartic polynomials. Thus we consider

A11(w1) = ã1w
2
1 + ã2w1 + ã3, (2.19a)

A21(w1) = ã2w
2
1 + b̃2w1 + c̃2, (2.19b)

A31(w1) = ã3w
2
1 + b̃3w1 + c̃3, (2.19c)

A12(w1) = ã2w
2
1 + b̃2w1 + b̃3, (2.19d)

A13(w1) = ã3w
2
1 + c̃2w1 + c̃3, (2.19e)

A22(w1) = ǫ1w
4
1 + ǫ2w

3
1 + ǫ3w

2
1 + ǫ4w1 + ǫ5, (2.19f)

A23(w1) = ǫ6w
4
1 + ǫ7w

3
1 + ǫ8w

2
1 + ǫ9w1 + ǫ10, (2.19g)

A32(w1) = ǫ11w
4
1 + ǫ12w

3
1 + ǫ13w

2
1 + ǫ14w1 + ǫ15, (2.19h)

A33(w1) = ǫ16w
4
1 + ǫ17w

3
1 + ǫ18w

2
1 + ǫ19w1 + ǫ20, (2.19i)
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where ã1, ã2, ã3, b̃2, b̃3, c̃2, c̃3 and ǫi, i = 1, 2...20 are unknown constants to be determined.
Then equation (2.6) reads

w3 = −w0 −
F̃

2G̃
(2.20)

where,

F̃ = ǫ11w
4
1 + ǫ6w

4
2 + ǫ12w

3
1 + ǫ7w

3
2 + ǫ1(w

3
1 + w3

2)w1w2 + (ǫ3 + b2)(w1 + w2)w1w2

+ǫ2(w
2
1 + w2

2)w1w2 + 2a2w
2
2w

2
1 + (ǫ13 + c2)w

2
1 + (b3 + ǫ8)w

2
2 + 2ǫ4w2w1

+(ǫ5 + ǫ14)w1 + (ǫ5 + ǫ9)w2 + ǫ10 + ǫ15,

G̃ = (ã1w
2
1w

2
2 + ã2w2w

2
1 + ã3w

2
1 + ã2w1w

2
2 + b̃2w1w2 + b̃3w1 + ã3w2 + c̃2w2 + c̃3).

We would like to mention here that both F̃ and G̃ can be factored with a common factor
by choosing the constants ã1, ã2, ã3, b̃2, b̃3, c̃2, c̃3 and ǫi, i = 1, 2...20, appropriately. That
is,

F̃ = (α̃1w1w2 + α̃2w1 + α̃3w2 + α̃4)[γ̃1w
2
1w

2
2 + γ̃2w

2
1w2 + γ̃3w1w

2
2 + γ̃4w

2
1 + γ̃5w

2
2

+γ̃6w1w2 + γ̃7w1 + γ̃8w2 + γ̃9]

G̃ = (α̃1w1w2 + α̃2w1 + α̃3w2 + α̃4)(β̃1w1w2 + β̃2w1 + β̃3w2 + β̃4)

For example, equation (2.20) reduces into

w3 = −w0 −
α̃4(4β̃2w1w2 + γ̃8(w1 + w2) + γ̃9)

2β̃1α̃4w1w2 + 2α̃4β̃2(w1 + w2) + α̃4γ̃8 − 2ǫ9

(2.21)

provided

ã1 = ã2 = ã3 = 0, b̃2 = α̃4β̃1, c̃2 = b̃3 = α̃4β̃2, c̃3 =
α̃4γ̃8

2
− ǫ9,

ǫ3 = −b̃2, ǫ4 = 2b̃3, ǫ5 = −ǫ9 + α̃4γ̃8, ǫ8 = −b̃3, ǫ9 − arbitrary,

ǫ10 = ǫ15 =
α̃4γ̃9

2
, ǫ13 = −b̃3, ǫ14 = ǫ9, ǫ18 = −ǫ9,

ǫ1 = ǫ2 = ǫ6 = ǫ7 = ǫ11 = ǫ12 = ǫ16 = ǫ17 = ǫ19 = ǫ20 = 0.

Also the conditions (2.5a,b) and (2.10) are identically satisfied for the above parametric
restrictions which in turn leads to the existence of second integral I2. Furthermore equation
(2.21) can be rewritten as

wn+3 = −wn −
2λ1wn+1wn+2 + λ2(wn+1 + wn+2) + λ3

λ4wn+1wn+2 + λ1(wn+1 + wn+2) + λ5

, (2.22)

where

β̃2 =
λ1

2α̃4

, γ̃8 =
λ2

α̃4

, γ̃9 =
λ3

α̃4

, β̃1 =
λ4

2α̃4

, ǫ9 =
α4γ8 − λ5

2



304 R Sahadevan and C Uma Maheswari

and so the integral I2 is

I2 = [λ4wn+1wn + λ1wn + λ1wn+1 + λ5]w
2
n+2 + [λ4wn+1w

2
n + λ1w

2
n − λ4w

2
n+1wn

+2λ1wnwn+1 + λ2wn + λ5wn − λ1w
2
n+1 + (λ2 − λ5)wn+1 + λ3]wn+2 + λ1wn+1w

2
n

+λ5w
2
n − λ1w

2
n+1wn + (λ2 − λ5)wn+1wn + λ3wn + (λ5 − λ2)w

2
n+1. (2.23)

It is easy to see that the third order O∆E (2.17) admitting the integral I1 assumes exactly
the same form as (2.22) by choosing the parameters β1, β3, γ2 and γ4 as

α4 =
λ2 − λ5

λ1

, β1 = λ4, β3 = λ1, γ2 = λ2, γ4 = λ3.

and the integral I1 becomes

I1 = (λ4wnwn+1 + λ1wn + λ1wn+1 + λ2 − λ5)[(λ4wnwn+1 + λ1wn + λ1wn+1 + λ5)wn+2

+2λ1wnwn+1 + λ2wn + λ2wn+1 + λ3]wn+2 + (λ1wn+1 + λ2 − λ5)[λ1wnwn+1 + λ5wn

+λ2wn+1 + λ3]wn + (λ5wn+1 + λ3)(λ2 − λ5)wn+1. (2.24)

Thus we conclude that the third order O∆E (2.22) admits 2 independent integrals I1 and
I2.

Proceeding along the similar lines described above one can identify more than one third
order O∆E possessing 2 independent integrals since the factorisation of F̃ and G̃ explained
earlier is not unique. For example F̃ and G̃ can also be factored as

F̃ = 2(β̃3w1 + β̃3w2 + β̃4)[β̃3(w1 + w2)
2 + γ̃7(w1 + w2) + γ̃9]

G̃ = (β̃3w1 + β̃3w2 + β̃4)
2

provided

ã3 = β̃2
3 , b̃2 = 2ã3, b̃3 = c̃2 = 2β̃3β̃4, c̃3 = β̃2

4 ,

ǫ3 = 4ã3, ǫ4 = 2β̃3(β̃4 + γ̃7), ǫ5 = β̃3γ̃9 + 2β̃2
4 , ǫ7 = 2ã3, ǫ8 = 2β̃3γ̃7,

ǫ9 = 2(β̃4γ̃7 + β̃3γ̃9) − ǫ5, ǫ10 = β̃4γ̃9, ǫ12 = 2β2
3 , ǫ13 = 2β̃3γ̃7,

ǫ14 = 2(β̃4γ̃7 + β̃3γ̃9) − ǫ5, ǫ15 = β̃4γ̃9, ǫ16 = β̃2
3 , ǫ17 = 2β̃3(γ̃7 − β̃4),

ǫ18 = −2β̃4γ̃7 + β̃3γ̃9 + γ̃2
7 + β̃2

4 , ǫ19 = γ̃9(γ̃7 − β̃4),

ã1 = ã2 = ǫ1 = ǫ2 = ǫ6 = ǫ11 = ǫ20 = 0.

Here again the conditions (2.5ab) and (2.10) are identically satisfied for the above para-
metric restrictions. In this case equation (2.20) becomes

wn+3 = −wn −
λ1(wn+1 + wn+2)

2 + λ2(wn+1 + wn+2) + λ3

λ1(wn+1 + wn+2) + λ4

, (2.25)

where
β̃3 = λ1, γ̃7 = λ2, γ̃9 = λ3, β̃4 = λ4
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and admits second integral I2 as

I2 = [λ1wnwn+2 + λ4wn+2 + λ1wnwn+1 + λ4wn + λ1w
2
n+1 + λ1wn+1wn+2

+(λ2 − λ4)wn+1][λ1wnwn+2 + λ4wn+2 + λ1wnwn+1 + λ4wn + λ1w
2
n+1

+λ1wn+1wn+2 + (λ2 − λ4)wn+1 + λ3]. (2.26)

It is easy to see that equation (2.14) possessing an integral I1 takes exactly the same form
as (2.25) for the parametric restrictions

c2 = b3 = λ1, e2 = 2λ1, e3 = λ2, f3 = λ3, c3 = λ4, a1 = a2 = b2 = a3 = 0

and the integral I1 becomes

I1 = [λ1wn + λ1wn+1 + λ4]w
2
n+2 + [λ1w

2
n + 2λ1wnwn+1 + λ2wn + λ1w

2
n+1 + λ2wn+1

+λ3]wn+2 + λ1wn+1w
2
n + λ4w

2
n + λ1w

2
n+1wn + λ2wn+1wn + λ3wn + λ4w

2
n+1 + λ3wn+1.

(2.27)

A detailed calculation shows that there exists no other third order difference equation
possessing 2 independent polynomial integrals. We wish to mention that the identified
third order difference equations (2.22) and (2.25) admitting 2 integrals are also measure
preserving with measure 1 and hence they are integrable. Equations (2.22) and (2.25) were
also obtained by Iatrou(2003a) using a different method. However, our analysis shows that
there exists a third order difference equation involving atleast 10 parameters possessing
one cyclic integral I1.

3 Construction of integrals for fourth order autonomous

ordinary difference equation

Consider an autonomous fourth order O∆E having the form

w4 = F (w0, w1, w2, w3). (3.1)

Assume that equation (3.1) admits an integral I(w0, w1, w2, w3) having the form

I(w0, w1, w2, w3) =
3

∑

j=1

[A1j(w1, w2)w
2
3 + A2j(w1, w2)w3 + A3j(w1, w2)]w

3−j
0

. (3.2)

Then the integrability condition I(n + 1) − I(n) = 0 leads to a quadratic equation in w4

F1(w1, w2, w3)w
2
4 + F2(w1, w2, w3)w4

−[F4(w1, w2, w3)w
2
0 + F5(w1, w2, w3)w0 + (F6(w1, w2, w3) − F3(w1, w2, w3))] = 0,

(3.3)

where

Fi(w1, w2, w3) =

3
∑

j=1

Aij(w2, w3)w
3−j
1

, i = 1, 2, 3,

Fk+3(w1, w2, w3) =

3
∑

j=1

Ajk(w1, w2)w
3−j
3

, k = 1, 2, 3.
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Hereafter we denote Fi(w1, w2, w3) as Fi for the remaining section unless otherwise speci-
fied. Equation (3.3) can be factorised as

(

w4 + w0 +
F5 + F2

2F1

)(

w4 − w0 +
F2 − F5

2F1

)

= 0 (3.4)

provided

A11(w2, w3)w
2
1 + A12(w2, w3)w1 + A13(w2, w3)

= A11(w1, w2)w
2
3 + A21(w1, w2)w3 + A31(w1, w2) (3.5a)

and

(F5 + F2)(F5 − F2) = 4(F6 − F3)F1. (3.5b)

Thus we obtain,

w4 = −w0 −
F2 + F5

2F1

, (3.6)

w4 = w0 −
F2 − F5

2F1

. (3.7)

It is easy to check that equation (3.5a) is satisfied with

A11(w1, w2) = (a1w
2
1 + a2w1 + a3)w

2
2 + (a2w

2
1 + a5w1 + a6)w2 + a3w

2
1 + a8w1 + a9

(3.8a)

A12(w1, w2) = (a2w
2
1 + a5w1 + a8)w

2
2 + A122(w1)w2 + A123(w1) (3.8b)

A13(w1, w2) = (a3w
2
1 + a6w1 + a9)w

2
2 + A132(w1)w2 + A133(w1) (3.8c)

A21(w1, w2) = (a2w
2
2 + a5w2 + a6)w

2
1 + A122(w2)w1 + A132(w2) (3.8d)

A31(w1, w2) = (a3w
2
2 + a8w2 + a9)w

2
1 + A123(w2)w1 + A133(w2), (3.8e)

where ai’s are constants while A122, A123, A132 and A133 are arbitrary functions. As pointed
out for third order difference equations, equation (3.5b) can be solved for two distinct
possibilities:

(i) F5 = F2 and F6 = F3, (3.9)

(ii) F5 6= F2 and F6 6= F3. (3.10)

Considering the condition (3.9) we have

A11(w1, w2) = (a1w
2
1 + a2w1 + a3)w

2
2 + (a2w

2
1 + a5w1 + a6)w2 + a3w

2
1 + a8w1 + a9

(3.11a)

A12(w1, w2) = (a2w
2
1 + a5w1 + a8)w

2
2 + (b4w

2
1 + b5w1 + b6)w2 + b7w

2
1 + b8w1 + b9

(3.11b)

A13(w1, w2) = (a3w
2
1 + a6w1 + a9)w

2
2 + (b7w

2
1 + c5w1 + c6)w2 + c7w

2
1 + c8w1 + c9

(3.11c)

A21(w1, w2) = (a2w
2
1 + b4w1 + b7)w

2
2 + (a5w

2
1 + b5w1 + c5)w2 + a6w

2
1 + b6w1 + c6

(3.11d)
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A22(w1, w2) = (a5w
2
1 + b5w1 + b8)w

2
2 + (b5w

2
1 + e5w1 + e6)w2 + c5w

2
1 + e6w1 + e9

(3.11e)

A23(w1, w2) = (a8w
2
1 + b6w1 + b9)w

2
2 + (b8w

2
1 + e6w1 + e9)w2 + c8w

2
1 + f8w1 + f9

(3.11f)

A31(w1, w2) = (a3w
2
1 + b7w1 + c7)w

2
2 + (a8w

2
1 + b8w1 + c8)w2 + a9w

2
1 + b9w1 + c9

(3.11g)

A32(w1, w2) = (a6w
2
1 + c5w1 + c8)w

2
2 + (b6w

2
1 + e6w1 + f8)w2 + c6w

2
1 + e9w1 + f9

(3.11h)

A33(w1, w2) = (a9w
2
1 + c6w1 + c9)w

2
2 + (b9w

2
1 + e9w1 + f9)w2 + c9w

2
1 + f9w1 + j9

(3.11i)

where ai’s, bi’s, ci’s, ei’s, fi’s and j9 are arbitrary constants. Thus we obtain a fourth
order difference equation

w4 = −w0 −
F2 + F5

2F1

= −w0 −
F

G
(3.12)

where

F = [(a2w
2
1 + a5w1 + a8)w

2
2 + (b4w

2
1 + b5w1 + b6)w2 + b7w

2
1 + b8w1 + b9]w

2
3

+[(a5w
2
1 + b5w1 + b8)w

2
2 + (b5w

2
1 + e5w1 + e6)w2 + c5w

2
1 + e6w1 + e9]w3

+[(a6w
2
1 + c5w1 + c8)w

2
2 + (b6w

2
1 + e6w1 + f8)w2 + c6w

2
1 + e9w1 + f9]

G = [(a1w
2
1 + a2w1 + a3)w

2
2 + (a2w

2
1 + a5w1 + a6)w2 + a3w

2
1 + a8w1 + a9]w

2
3

+[(a5w
2
1 + b5w1 + c5)w2 + c6 + (b4w1 + b7 + a2w

2
1)w

2
2 + b6w1 + a6w

2
1]w3

+(a3w
2
1 + b7w1 + c7)w

2
2 + c9 + a9w

2
1 + (a8w

2
1 + b8w1 + c8)w2 + b9w1

with an integral I1 given by

I1 = [[(a1w
2
1 + a2w1 + a3)w

2
2 + (a2w

2
1 + a5w1 + a6)w2 + a3w

2
1 + a8w1 + a9]w

2
0

+[(a2w
2
1 + a5w1 + a8)w

2
2 + (b4w

2
1 + b5w1 + b6)w2 + b7w

2
1 + b8w1 + b9]w0

+(a3w
2
1 + a6w1 + a9)w

2
2 + (b7w

2
1 + c5w1 + c6)w2 + c7w

2
1 + c8w1 + c9]w

2
3

+[[(a2w
2
1 + b4w1 + b7)w

2
2 + (a5w

2
1 + b5w1 + c5)w2 + a6w

2
1 + b6w1 + c6]w

2
0

+[(a5w
2
1 + b5w1 + b8)w

2
2 + (b5w

2
1 + e5w1 + e6)w2 + c5w

2
1 + e6w1 + e9]w0

+(a8w
2
1 + b6w1 + b9)w

2
2 + (b8w

2
1 + e6w1 + e9)w2 + c8w

2
1 + f8w1 + f9]w3

+[(a3w
2
1 + b7w1 + c7)w

2
2 + (a8w

2
1 + b8w1 + c8)w2 + a9w

2
1 + b9w1 + c9]w

2
0

+[(a6w
2
1 + c5w1 + c8)w

2
2 + (b6w

2
1 + e6w1 + f8)w2 + c6w

2
1 + e9w1 + f9]w0

+(a9w
2
1 + c6w1 + c9)w

2
2 + (b9w

2
1 + e9w1 + f9)w2 + c9w

2
1 + f9w1 (3.13)

Proceeding further along the lines described for third order O∆E we find that there exist
six fourth order O∆E possessing 2 independent integrals. They are

(i) wn+4 = −wn−
λ1(w

2
n+2 + wn+2(wn+1 + wn+3)) + λ3(wn+1 + wn+3) + λ2wn+2 + λ4

λ1wn+2 + λ2

,



308 R Sahadevan and C Uma Maheswari

(3.14)

I1 = (λ1wn+1 + λ3)w
2
n+3 + ((2λ1wn+1 + 2λ3)wn+2 + λ1w

2
n+1 + λ2wn+1 + λ4)wn+3

+(λ1wn+1 + 2λ3)w
2
n+2 + (λ1w

2
n+1 + (λ2 + 2λ3)wn+1 + 2λ4)wn+2 + 2λ3w

2
n+1

+2λ4wn+1 + (λ1wn+2 + λ3)w
2
n + ((2λ1wn+2 + 2λ3)wn+1 + λ1w

2
n+2 + λ2wn+2 + λ4)wn.

(ii) wn+4 = −wn −
λ1(wn+1 + wn+2 + wn+3)

2 + λ2(wn+1 + wn+2 + wn+3) + λ3

λ1(wn+1 + wn+2 + wn+3) + λ4

,

(3.15)

I1 = (λ1wn + λ1wn+2 + λ1wn+1 + λ4)w
2
n+3 + (λ1w

2
n + (2λ1wn+2 + 2λ1wn+1 + λ2)wn

+λ1w
2
n+2 + (2λ1wn+1 + λ2)wn+2 + λ1w

2
n+1 + λ2wn+1 + λ3)wn+3 + (λ1wn+1

+λ4)w
2
n+2 + (λ1w

2
n+1 + λ2wn+1 + λ3)wn+2 + λ4w

2
n+1 + λ3wn+1 + (λ1wn+2

+λ1wn+1 + λ4)w
2
n + (λ1w

2
n+1 + (2λ1wn+2 + λ2)wn+1 + λ1w

2
n+2 + λ2wn+2 + λ3)wn.

(iii) wn+4 = −wn−
λ1(wn+1wn+2 + wn+2wn+3) + λ2(wn+1 + wn+3) + λ4wn+2 + λ3

λ1(wn+1 + wn+3) + λ4

,

(3.16)

I1 = (λ1wn + λ2 − λ4)(λ1wn+2 + λ2 − λ4)(λ1wn+1 + λ2 − λ4)[(λ1wn + λ1wn+2 + λ4)wn+3

+λ1wnwn+1 + λ1wn+1wn+2 + λ4wn+1 + λ2wn+2 + λ2wn + λ3]wn+3 + (λ2 − λ4)

×(λ1wn+2 + λ2 − λ4)(λ1wn+1 + λ2 − λ4)(λ1wn+1wn+2 + λ1wnwn+1 + λ2wn+1

+λ4wn+2 + λ4wn + λ3)wn + (λ2 − λ4)
2(λ2

2wn+1wn+2 + λ2λ4w
2
n+2 + λ2λ3wn+2

−λ2λ4wn+1wn+2 + λ1λ2wn+1w
2
n+2 + λ1λ2w

2
n+1wn+2 + λ2λ4w

2
n+1 + λ2λ3wn+1

−λ4λ3wn+2 + λ2
1w

2
n+1w

2
n+2 − λ2

4w
2
n+2 + λ1λ3wn+1wn+2 − λ2

4w
2
n+1 − λ3λ4wn+1).

(iv) wn+4 = −wn−
(λ1wn+2 + 2λ3)(wn+1 + wn+3) + λ1(w

2
n+2 + wn+1wn+3) + λ2wn+2 + λ4

λ1wn+2 + λ3

,

(3.17)

I1 = (λ1wn+1 + λ3)w
2
n+3 + ((λ1wn+2 + λ1wn+1 + 2λ3)wn + (λ1wn+1 + 2λ3)wn+2

+λ1w
2
n+1 + λ2wn+1 + λ4)wn+3 + λ3w

2
n+2 + (2λ3wn+1 + λ4)wn+2 + λ3w

2
n+1

+λ4wn+1 + (λ1wn+2 + λ3)w
2
n + ((λ1wn+2 + 2λ3)wn+1 + λ1w

2
n+2 + λ2wn+2 + λ4)wn.

(v) wn+4 = −wn −
λ1(w

2
n+1 + 2w2

n+2 + w2
n+3 + 4(wn+1wn+2 + wn+2wn+3 + wn+3wn+1))

λ1wn+1 + λ1wn+3 + 2λ1wn+2 + λ3

−
2(λ2 − λ3)wn+2 + λ2(wn+1 + wn+3) + λ4

λ1wn+1 + λ1wn+3 + 2λ1wn+2 + λ3

, (3.18)
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I1 = (λ1wn + λ1wn+2 + 2λ1wn+1 + λ3)w
2
n+3 + (λ1w

2
n + (4λ1wn+2 + 4λ1wn+1 + λ2)wn

+λ1w
2
n+2 + (4λ1wn+1 + λ2)wn+2 + 2λ1w

2
n+1 + (2λ2 − 2λ3)wn+1 + λ4)wn+3 + (λ1wn+1

+λ3)w
2
n+2 + (λ1w

2
n+1 + λ2wn+1 + λ4)wn+2 + λ3w

2
n+1 + λ4wn+1 + (λ1wn+1 + 2λ1wn+2

+λ3)w
2
n + (λ1w

2
n+1 + (4λ1wn+2 + λ2)wn+1 + 2λ1w

2
n+2 + (2λ2 − 2λ3)wn+2 + λ4)wn.

(vi) wn+4 = −wn−
λ1wn+1wn+3 + 2λ4wn+2 + (λ4 + λ5)(wn+1 + wn+3) + λ3

λ1wn+2 + λ4 − λ5

, (3.19)

I1 = (λ1wn+1 + λ4 − λ5)w
2
n+3 + ((λ1wn+2 + λ1wn+1 + 2λ4)wn + (2λ5 − λ1wn+1)wn+2

+2λ4wn+1 + λ3)wn+3 − 2λ5(w
2
n+1 + w2

n+2) + 2(λ5 − λ4)wn+1wn+2 + (λ1wn+2

+λ4 − λ5)w
2
n + ((2λ5 − λ1wn+2)wn+1 + 2λ4wn+2 + λ3)wn.

Since the calculations are tedious and cumbersome the explicit forms of expressions Aij(w1, w2)
associated with second integral I2 for each of the above identified six cases are given in
Appendix A.

Finally we would like to mention that with the limited software facilities available we
have identified the above fourth order O∆E possessing 2 independent polynomial integrals
and hence we do not claim that the identified list of difference equations is an exhaustive
one.

4 Summary

In this article a method is described to construct polynomial integrals for third order
and fourth order O∆E. We have identified two distinct third order equations (2.22) and
(2.25), each of them admits 2 independent integrals. It is appropriate to mention here
that one of the integrals in both the cases is cyclic invariant. Also the identified equations
(2.22) and (2.25) are measure preserving with measure 1 and hence they are integrable.
Similar observation has also been noted by Iatrou (2003a). For fourth order O∆E we have
identified six distinct equations (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19) admitting 2
independent integrals. Here again one of the two integrals is cyclic invariant. Also they are
reversible as well as measure preserving with measure 1. We would like to mention that the
fourth order equations given in equations (3.14), (3.15) and (3.16) are also symplectic and
hence they are integrable in the Liouville sense.This was also observed by Iatrou(2003b).
We wish to recall that Byrnes et al (1999) has proved that if an N -th order autonomous
difference equation is measure preserving and has at least N − 2 integrals then it has a
degenerate Poisson structure, so defines a symplectic map on each 2D level set of these
integrals. Difference equations given by (3.17), (3.18), (3.19) possessing 2 independent
integrals belong to this category and they are expected to be integrable. The integrability
of the above difference equations can be established(hopefully) by other means, for example
through a criterion developed for discrete equations (Halburd,2005). The effectiveness of
the method is also discussed for N -th order O∆E in the Appendix.

Acknowledgments. The work of R.S. forms part of the research project funded by CSIR,

New Delhi. The work of C.U. is supported by UGC, New Delhi.
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Appendix A

From the analysis we observe that A21(wn+1, wn+2) = A12(wn+2, wn+1), A32(wn+1, wn+2) =
A23(wn+2, wn+1), A31(wn+1, wn+2) = A13(wn+2, wn+1) in all the six fourth order difference
equations and therefore we presented only the forms of A11(wn+1, wn+2), A12(wn+1, wn+2),
A13(wn+1, wn+2), A22(wn+1, wn+2), A23(wn+1, wn+2), A33(wn+1, wn+2).
Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.14):

A11 = 0,

A12 = λ1(λ1wn+1 + λ3)(λ1wn+2 + λ3),

A13 = (λ1wn+1 + λ3)((λ1λ3wn+2 + λ1λ4) + 2λ2
3 − λ2λ3),

A22 = (2λ2
3 − λ2λ3 + λ1λ3wn+2 + λ1λ4)(λ1wn+1 + λ3) + λ1(λ1wn+2 + λ3)

×(λ4 + λ1w
2
n+1 + λ1wn+1wn+2 + λ2wn+1 + λ3wn+2),

A23 = (λ1λ3wn+2 + λ1λ4 + 2λ2
3 − λ3λ2)(λ4 + λ1w

2
n+1 + λ1wn+1wn+2 + λ2wn+1 + λ3wn+2),

A33 = (2λ2
3 − λ3λ2 + λ1λ4)(λ3w

2
n+2 + λ4wn+2 + λ4wn+1) + λ1λ3(λ3wn+2 + λ3wn+1

+λ4)wn+1wn+2 + λ3(2λ
2
3 − λ3λ2 + λ1λ4)(wn+2 + wn+1)wn+1.

Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.15):

A11 = λ2
1(λ1wn+2 + λ1wn+1 − 2λ4 + λ2),

A12 = λ1(λ1wn+1 + λ1wn+2 + λ4)(λ1wn+2 + λ1wn+1 − 2λ4 + λ2)

+λ2
1((2λ2 − 4λ4)wn+1 + λ1wn+1wn+2 + λ1w

2
n+1 + λ2wn+2 − 2λ4wn+2),

A13 = λ1(λ1wn+1 + λ1wn+2 + λ4)(2λ2wn+1 − 4λ4wn+1 + λ1wn+1wn+2 + λ1w
2
n+1

+λ2wn+2 − 2λ4wn+2),

A22 = 2λ3
1w

3
n+2 + λ1(λ1(λ3 − 16λ4wn+1 + 7λ1w

2
n+1 + 11λ2wn+1) + 2λ2(λ2 − 2λ4))wn+2

+λ2
1(5λ2 − 7λ4 + 7λ1wn+1)w

2
n+2 + 2λ3

1w
3
n+1 + λ2

1(5λ2 − 7λ4)w
2
n+1 + λ1(λ1λ3

+2λ2
2 − 4λ2λ4)wn+1 + λ1λ2λ3 + λ4(4λ2λ4 − λ2

2 − 4λ2
4 − 2λ1λ3),

A23 = 2λ2
1(λ1wn+1 + λ2 − 2λ4)w

3
n+2 + (λ2

1(5λ1wn+1 + 8λ2 − 13λ4)wn+1 + λ1(2λ
2
4

+2λ2
2 − 5λ2λ4))w

2
n+2 + (λ1(λ1(4λ1wn+1 + 9λ2 − 13λ4)wn+1 + 4λ2

2 − 8λ2λ4

+λ1λ3)wn+1 + λ4(4λ
2
4 − 4λ2λ4 − 2λ1λ3 + λ2

2) + λ1λ2λ3)wn+2 + λ3
1w

4
n+1

+λ2
1(3λ2 − 4λ4)w

3
n+1 + λ1(λ1λ3 + 2λ2

2 − 4λ2λ4)w
2
n+1 + 2λ1λ3(λ2 − 2λ4)wn+1,
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A33 = λ2
1(λ1wn+1 + λ2 − 2λ4)w

4
n+2 + (3λ3

1w
2
n+1 + λ2

1(5λ2 − 8λ4)wn+1 + λ1(2λ
2
2 + 4λ2

4

−6λ2λ4))w
3
n+2 + (3λ3

1w
3
n+1 + 4λ2

1(2λ2 − 3λ4)w
2
n+1 + λ1(6λ

2
4 − 13λ2λ4 + 5λ2

2

+λ1λ3)wn+1 + λ4(4λ2λ4 − 4λ2
2 − 2λ1λ3) + λ2(λ

2
2 + λ1λ3))w

2
n+2 + (λ3

1w
4
n+1

+λ2
1(5λ2 − 8λ4)w

3
n+1 + λ1(6λ

2
4 − 13λ2λ4 + 5λ2

2 + λ1λ3)w
2
n+1 + (4λ3

4 − 6λ1λ3λ4

−3λ2
2λ4 + 3λ1λ2λ3 + λ3

2)wn+1 + λ3(4λ
2
4 − 4λ2λ4 + λ2

2))wn+2

+wn+1(λ2 − 2λ4)(λ1wn+1 + λ2 − 2λ4)(λ1w
2
n+1 + λ2wn+1 + λ3).

Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.16):

A11 = λ3
1(λ1wn+1wn+2 + (λ2 − λ4)(wn+1 + wn+2)),

A12 = λ2
1(λ1wn+2 + λ4)(λ1wn+1wn+2 + (λ2 − λ4)(wn+2 + wn+1))

+λ1(λ2 − λ4)(λ
2
1wn+1wn+2 + (λ2 − λ4)(λ1wn+1 − λ2 + λ4)),

A13 = (λ1wn+2 + λ4)(λ2 − λ4)(λ
2
1wn+1wn+2 + (λ2 − λ4)(λ1wn+1 + λ4 − λ2)),

A22 = λ2
1(λ1wn+1 + λ2)(λ2 − λ4 + λ1wn+1)w

2
n+2 + λ2

1(λ1(2λ2 − λ4)w
2
n+1

+(λ1λ3 + 2λ2
2 − λ2λ4 − λ2

4)wn+1 + λ3(λ2 − λ4))wn+2

+(λ2 − λ4)(λ
2
1(λ2wn+1 + λ3)wn+1 + (λ2 − λ4)(λ

2
4 − λ2

2)),

A23 = λ1(λ2 − λ4)(λ
2
1w

2
n+1 + λ1(2λ2 − λ4)wn+1 + (λ2 − λ4)

2)w2
n+2

+(λ2 − λ4)(λ
2
1(λ2wn+1 + λ3)wn+1 − (λ2 − λ4)((λ2 − λ4)

2 − 2λ1λ4wn+1))wn+2

+(λ2 − λ4)
2(λ4wn+1 + λ3)(λ1wn+1 − λ2 + λ4),

A33 = (λ2 − λ4)
2((λ2

1w
2
n+1 + λ1λ2wn+1 + (λ2 − λ4)

2)w2
n+2 + (λ1λ2w

2
n+1

−(λ2
2 − 3λ2λ4 + 2λ2

4 − λ1λ3)wn+1)wn+2 + (λ2 − λ4)
2w2

n+1).

Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.17):

A11 = 0,

A12 = α11λ1(λ1wn+1 + λ3),

A13 = λ1(λ1wn+1 + λ3)(α11(wn+1 + wn+2) + α12),

A22 = α12λ1(λ1(wn+1 + wn+2) + 2λ3) + α11(λ1(λ1(w
2
n+1 + w2

n+2)

+(3λ1wn+1 + 4λ3)wn+2 + 4λ3wn+1 + λ4) + λ3(3λ3 − λ2)),
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A23 = α12λ1((λ1wn+1 + 2λ3)wn+2 + (λ1wn+1 + λ2)wn+1 + λ4)

+α11(λ1((3λ3 + 2λ1wn+1)w
2
n+2 + (3λ1w

2
n+1 + 2λ2wn+1 + λ4)wn+2

+λ1w
3
n+1 + λ2w

2
n+1 + λ4wn+1) + λ3(λ2 − 3λ3)wn+2),

A33 = α12λ1(λ3w
2
n+2 + (2λ3wn+1 + λ4)wn+2 + (λ3wn+1 + λ4)wn+1) + α11(λ1(λ1wn+1

+2λ3)w
3
n+2 + (2λ1(λ1wn+1 + λ2)wn+1 + λ1λ4 + 2λ3(λ2 − 3λ3))w

2
n+2 + (λ2

1w
3
n+1

+2λ1λ2w
2
n+1 + (λ2

2 + 2λ1λ4 − 2λ2λ3 − 3λ2
3)wn+1 + λ4(λ2 − 3λ3))wn+2

+2λ1λ3w
3
n+1 + (λ1λ4 + 2λ2λ3 − 6λ2

3)w
2
n+1 + λ4(λ2 − 3λ3)wn+1).

Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.18):

A11 = α8λ
2
1,

A12 = λ1(α8(4λ1wn+1 + 2λ1wn+2 + λ3) + 2α12λ1),

A13 = λ1(2λ1wn+1 + λ1wn+2 + λ3)(2α8wn+1 + α8wn+2 + 2α12),

A22 = α12(2λ1λ2 + 8λ2
1(wn+2 + wn+1)) + α8(2λ1λ2(wn+1 + wn+2)

+2λ2
1(8wn+2wn+1 + 3(w2

n+1 + w2
n+2)) + λ1λ4 + 2λ2

3 − λ2λ3),

A23 = α12(2λ
2
1(2w

2
n+1 + 4wn+2wn+1 + w2

n+2) + 2λ1λ2wn+2 + 4λ1(λ2 − λ3)wn+1

+2λ1λ4) + α8(2λ1λ2w
2
n+2 + 2λ2

1(2w
3
n+1 + w3

n+2 + 7wn+2w
2
n+1 + 5w2

n+2wn+1)

+6λ1λ2wn+1wn+2 − λ1λ3(4w
2
n+1 + w2

n+2 + 4wn+2wn+1) + λ1λ4(wn+2 + 2wn+1)

+λ2λ3wn+2 − 2λ2
3wn+2 + 4λ1λ2w

2
n+1),

A33 = α12(2λ1λ4(wn+1 + wn+2) + 2λ1λ2wn+1wn+2 + 2λ1λ3(w
2
n+1 + w2

n+2)

+2λ2
1wn+1wn+2(wn+1 + wn+2)) + α8(−2λ2λ3w

2
n+1 + 2λ2

3wn+2wn+1

+2λ2
2wn+2wn+1 − 2λ2λ3w

2
n+2 + λ2

1w
4
n+2 + λ2

1w
4
n+1 − 2λ4λ3wn+1 + λ1λ4w

2
n+2

+11λ2
1w

2
n+1w

2
n+2 + 8λ1λ2wn+1w

2
n+2 − 9λ1λ3wn+1w

2
n+2 + 8λ1λ2w

2
n+1wn+2

−9λ1λ3w
2
n+1wn+2 + 3λ1λ4wn+1wn+2 − 5λ2λ3wn+2wn+1 + 6λ2

1w
3
n+2wn+1

+2λ1λ2w
3
n+2 − 2λ1λ3w

3
n+2 + 6λ2

1w
3
n+1wn+2 + λ4λ2wn+2 − 2λ3λ4wn+2

+2λ1λ2w
3
n+1 − 2λ1λ3w

3
n+1 + λ1λ4w

2
n+1 + λ4λ2wn+1 + λ2

2w
2
n+2 + λ2

2w
2
n+1).

Explicit forms for Aij(wn+1, wn+2) associated with fourth order difference equation (3.19):

A11 = A12 = 0,

A13 = (λ1wn+1 + λ4 + λ5)(λ4 + λ1wn+1 − λ5),

A22 = (λ1wn+1 + λ4 + λ5)(λ1wn+2 + λ4 + λ5),

A23 = (λ1wn+1 + λ4 + λ5)(2λ4wn+1 + λ5wn+2 + λ4wn+2 + λ3),
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A33 = (λ4 + λ5)((λ4 + λ5)wn+2wn+1 + λ3(wn+1 + wn+2) + λ4(w
2
n+2 + w2

n+1)

−λ5(w
2
n+2 + w2

n+1)).

Appendix B

Consider an Nth-order autonomous O∆E having the form

wn+N = F (wn, ...wn+N−1). (B1)

Let us assume that equation (B1) admits a polynomial integral I(n) having the form

I(n) =

3
∑

j=1

[A1j(n)w2
n+N−1 + A2j(n)wn+N−1 + A3j(n)]w3−j

n , (B2)

where
Aij(n) = Aij(wn+1, wn+2, ..., wn+N−2), i, j = 1, 2, 3

are unknown functions. Then the integrability condition I(n + 1) − I(n) = 0 leads to a
quadratic equation in wn+N

F1(n)w2
n+N + F2(n)wn+N + F3(n) − (F4(n)w2

n + F5(n)wn + F6(n)) = 0, (B3)

where

Fi(n) =
3

∑

j=1

Aij(n + 1)w3−j
n+1

, i = 1, 2, 3, Fk(n) =
3

∑

j=1

Ajk(n)w3−j
n+N−1

, k = 1, 2, 3.

It is straightforward to check that equation (B3) can be factorised as

(

wn+N + wn +
F2(n) + F5(n)

2F1(n)

)(

wn+N − wn +
F2(n) − F5(n)

2F1(n)

)

= 0 (B4)

provided

A11(n+1)w2
n+1−A11(n)w2

n+N−1+A12(n+1)wn+1−A21(n)wn+N−1 = A31(n)−A13(n+1)(B5a)

and

[F5(n) + F2(n)][F5(n) − F2(n)] = 4[F6(n) − F3(n)]F1(n). (B5b)

Thus we obtain,

wn+N = −wn −
F2(n) + F5(n)

2F1(n)
, (B6)

wn+N = wn −
F2(n) − F5(n)

2F1(n)
. (B7)

Obviously (B5b) is satisfied for distinct possibilities

(1) F5 = F2 and F6 = F3,
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(2) F5 6= F2 and F6 6= F3.

Demanding that one of the integrals of the given O∆E (B1), say, I1(n) is cyclic invariant,
that is

I1(wn, wn+1, · · · , wn+N−2, wn+N−1) = I1(wn+1, wn+2, · · · , wn+N−1, wn)

= I1(wn+2, wn+3, · · · , wn, wn+1) = · · · = I1(wn+N−1, wn, · · · , wn+N−3, wn+N−2)

it is easy to verify that both the conditions given in equation (B5a) as well as F5 = F2

and F6 = F3 satisfy. In this case the integral I1 will take the form

I1(n) =
∑

0≤i1≤i2≤...≤in≤2

ai1i2...inwi1
n+1

wi2
n+2

...win
n+N+1

,

where

ai1,i2,··· ,in−1,in = ai2,i3,··· ,in,i1 = · · · = ain,i1,··· ,in−2,in−1, provided i1 6= i2 6= · · · 6= in.

Remaining integrals I2(n), I3(n) · · · IN−1(n) may be constructed by demanding them not
to be cyclic invariant. We find that the integrals (2.24) of the third order difference
equation (2.22) and (2.27) of (2.25) are cyclic invariant.
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