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Abstract

The proposed relational fuzzy clustering method, called FRFP ( fuzzy relational fixed point), is based on determining a
fixed point of a function of the desired membership matrix. The ethod is compared to other relational clustering
methods. Simulations show the method to be very effective and less computationally expensive than other fuzzy
relational data clustering methods. The membership matrices that are produced by the proposed method are less crisp
than those produced by NERFCM and more representative of the proximity matrix that is used as input to the clustering
process.
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1 Introduction

The first stage of knowledge acquisition concerning a
group of objects is to partition or divide the objects into
groups based either on individual object (IO) data such
as feature vectors or on inter-object ( object relational)
(OR) data incorporated in proximity matrices.
Partitioning (clustering) algorithms may be divided
according to whether the intended grouping is a crisp
partition, a fuzzy partition or a hierarchy which is a set of
nested partitions. In case of fuzzy clustering an object is
assigned to all clusters to varying degrees that sum to
one for each object in case of probabilistic fuzzy
clustering. This degree may be close to zero for some
objects and clusters. Fuzzy clustering is a generalization
of crisp or hard clustering whereby objects are assigned
completely to a single cluster.
Non-hierarchical clustering algorithms may also be
divided according to the data that is provided as input.
The two types of data are individual object (IO) data and
object relational (OR) data. The former includes data
about an individual object while the latter includes data
about relationships between objects. A typical example
of IO data is a set of feature vectors with a feature vector

for each object. An example of OR data is a proximity
(similarity or dissimilarity) matrix specifying the
relationship between all pairs of objects. In areas like the
social sciences, management and industrial engineering,
OR data is most often available. An example of
proximity measurements in the social sciences are the
results of experiments in psychometric applications[1] in
which a subject has been asked to rate the similarity
between pairs of stimuli.
An algorithm that uses the proximity matrix of inter-
object proximities directly as input is called an object
relational data clustering (ORDC) [2-5] algorithm or
relational clustering algorithm for short and an algorithm
that uses object data is called individual object data
clustering (IODC) algorithm or object data clustering
algorithm for short.
Fuzzy ORDC algorithms may be based on optimizing a
cost function, on creating hierarchies, on decomposition
of fuzzy equations or, as in the case of the proposed
method, on finding the fixed point of a function.
A proximity matrix accumulates the pair wise indices of
proximity and may be either a similarity index or a

dissimilarity index. Similarity measurements, ,i j , may
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have to be transformed to the corresponding dissimilarity

scores ,i j , if visualization of the inter-object

proximities is desired as in this paper, by using (1).

, ,1i j i j   (1)

Proximity data can be readily obtained from feature
vectors if the components of the feature vectors are
numeric but not so readily if they are ordinal or nominal.
In this paper it is assumed that either pattern vectors are
not available or that meaningful ways of aggregating
patterns are not available but that a proximity matrix is
available or can be calculated. The method of relational
clustering proposed in this paper is based on finding
fixed points of functions of the membership matrix rather
than on objective functions to be optimized
In addition to producing vectors for automatic

clusterering, two-dimensional vectors are also produced
to allow for visual clustering as a means for evaluating
the result of automatic clustering. The visual
representation is compared to the membership matrices
that are obtained by automatic clustering and also to the
values of a clustering quality index.
The remainder of the paper is organized as follows. First
is a description of previous work. This is followed by
descriptions of other relational clustering methods. Next
is a section on clustering quality indices followed by a
section on experiments trying out the various methods.
The final section is a summary with conclusions.
To allow variable names of more than one letter and
thereby permit variable names to be mnemonic, all
operations are denoted by explicit operators.
Multiplication, for example, is defined explicitly using
the operator . Implicit multiplication does not exist in
this paper and na for example is just a variable name.
Names of arrays are in bold font. Rank-1 array variables
are in lower case and names of arrays of rank greater
than 1 are in capital. Logic expressions evaluate to 0 and
1 for false and true respectively so that they can be used
in arithmetic expressions.

2 Previous Work

There are several different implementations of relational
clustering [3-9]. Of these, two very successful ones [3, 7]
are both based on fuzzy c-means (FCM) [10]. Relational
fuzzy c-means (RFCM) [3] has the restriction that in
theory the proximities should be Euclidian distances.
This restriction in practice often is not satisfied and its
requirement is removed in another algorithm that is a
modification and is called non-euclidian relational fuzzy
c-means (NERFCM) [7]. The modification requires an
extra step called the β-spread transformation that
prevents distances between objects and pseudo-
prototypes from becoming negative. RFCM and

therefore also NERFCM is somewhat non-intuitive in
the creation of meaningless prototypes and the main
objective of the two algorithms is to provide duals of
FCM. Since feature vectors are not available, centroids,
that would designate prototypes otherwise are not
available.
Some work done by others on relational clustering is

described next. Nasraoui etal. [11] introduce the
Relational Fuzzy C—Maximal Density Estimator (RFC-
MDE) algorithm that is robust and can deal with outliers
as is typical in web mining. It can work on non-euclidian
relational data. Krishnapuram etal. [12] present new
algorithms called fuzzy c-moids (FCMdd) and robust
fuzzy c-moids (RFCMdd) for clustering of objects based
only on relational data. Objects, called medoids, one for
each cluster, are selected in such a way that the total
fuzzy dissimilarity within each cluster is minimized. The
originators make the claim that the FCMdd method is
more efficient than RFCM which is very important when
it comes to web mining where it is proposed to be
applied. Dave and Sen [9, 13] propose a new algorithm,
called FRC, that is a generalization of FANNY [8] with
one of the objectives being increased robustness.
Cimino etal. [14] propose a new approach to robust
fuzzy relational clustering that puts no restriction on the
proximity matrix. Hathaway etal. [15] propose a
kernalized form of the non-euclidian relational fuzzy c-
means algorithm. Denoeux and Masson[16] introduce a
new relational clustering algorithm that is based on the
Dempster-Shafer theory of belief functions.
Another paper that studies fuzzy clustering without
prototypes is by Borgelt [17]. An iterative update rule is
derived from an objective function that only involves the
proximities between data points and the membership
degrees of the data points in the various clusters.

3 Existing Relational Clustering Methods that are
Compared to the Proposed Clustering Method

The methods used in the comparison to the proposed
method are described next.

3.1 Roubens

Roubens [4], following the ideas of Dunn [18] and
Ruspini [19] , proposes a non-metric and fuzzy method
that is based on the objective function (2) that is to be
minimized.

2 2
, , ,

, ,

, ,0 , 1

i k j k i j
i j k

i k i k
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k i i
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D is the dissimilarity matrix. Each row of M
corresponds to an object and each column corresponds to
a cluster. The effect of the normalizing denominator
ensures that the values in the rows of M sum to 1.
According to the author [4] “the global minimum of this
non-linear program is computationally impractical for
moderate or large data sets”. We can get an
approximation by using (3) iteratively until there is little
change. The result depends on the initial value that is
used for M however. The solution M is actually a fixed
point of the function on the right of (3) obtained by
optimizing an objective function however rather than
directly.

3.2 Windham’s AP

The relational clustering method by Windham [5], called
the assignment-prototype(AP) algorithm, is very
interesting in that although it does not make use of
object-attribute data to determine prototypes, it provides
prototype information. Each object is a prototype for a
cluster to a certain degree. The constraint is that the sum
of the degrees for a prototype is 1 just as the sum of the
degrees to which an object belongs to clusters is 1. The
objective function to be minimized is

2 2
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(4)

That is the weighted sum of the distances between
objects is minimized as in (2). However in (2) both
objects play the same role and both weights are
membership values while in (4) one of the objects plays
the role of a prototype and one of the weights is the
degree to which it is a prototype for a type. By
comparison when clustering is done using attribute
vectors, the attribute vector for a prototype is the
weighted average of attribute vectors. Generally the
resulting average attribute vector does not represent an
actual object. The solution to (4), found by using
Lagrangian multipliers, is
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The division by the denominator ensures that the values
in the rows of P sum to 1 as before. If we substitute the
right side of the second expression in the first expression
in (5) we get a function of M only as before and
therefore a fixed point expression in M.

3.3 NERF C-means

The non-euclidian relational fuzzy c-means appears
below as described by their originators, Hathaway and
Bezdek in [7]. The method is identical to relational
fuzzy c-means (RFCM) originated by the same authors
but with the addition of a spreading transformation (step
(8)) on the proximity matrix.

Algorithm 1 NERFCM

-given a similarity matrix R=R(1)

-set the components of M to random values satisfactory
for a membership matrix
-calculate pseudo-prototypes

,1 ,2 ,

,1 ,2 ,

( , , .. )
1..

..

m m m
k k k n

k m m m
k k k n

k nk 
 

M M M
v

M M M
(6)

-calculate the distances between pseudo-prototypes and
objects by

( )
( )

, ( ) 1.. 1..
2

β
β k k

k p k p k nk p np
 

    
v R v

D R v

(7)
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Logically this algorithm is much more complex than the
other two.

4 Proposed Fixed Point Clustering Method

For a crisp partition it is desirable that each element
belongs to the cluster with which it has the closest
affinity or to which it is most similar. Formally we
desire that

,

max
( arg ( , ))p k p lk s C

l
 M x (10)

The operator  represent logical equality. Logic
expressions evaluate to 0 and 1 for false and true
respectively so that they can be used in arithmetic

expressions. ( , )p ls Cx is the similarity or affinity

between object xp and cluster Cl that can be defined in
several ways. Mp,k is a binary variable here denoting
whether or not xp belongs to cluster Ck. This is a winner
take all situation with a cluster getting all or nothing of
an object in terms of belongingness.

Let us now consider various expressions for ( , )p ks Cx

in terms of similarities between two elements. One
method is to define the similarity between clusters and
elements as the similarity between the prototype for Ck

and xp. This gives us the desired outcome of the k-
means method of clustering.

For prototype-less clustering the similarity between Ck

and xp may be defined in terms of similarities between
xp and elements of Ck in various other ways such as
maximum similarity, minimum similarity, or average

similarity. In the following , ( , )p q p qsS x x where

( , )p qs x x is the similarity between xp and xq.

For minimum similarity we set
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For maximum similarity we set
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For average similarity we set
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Where we have replaced ( )q kCx with ,q kM .

A soft approach is to allow a pattern to belong to all
clusters to some degree. This can be accomplished by
replacing (10) with (14) to define the condition for a
fuzzy partition.

,
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If we replace ( , )p ks Cx using (11), (12) and (13) we get

respectively the following.
For minimum similarity we get
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For maximum similarity we get
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For average similarity we get
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Mp,k is the membership of entity p in cluster k. An
exponent m that effects the degree of fuzziness has been
added also. Proximity or relational matrices are generally
provided as distance matrices rather than as similarity
matrices, S. Distances can be converted to similarities
using

1

1
s

d



(18)

Each of the expressions on the right side of the equation
in (15), (16), and (17) is a continuous function of M on
the domain npxnk and therefore Brouwer’s fixed point
theorem applies.
Therefore (15), (16), and (17) should have a solution.

5 Fixed Point Clustering and the Cluster Affinity
Search Technique

The method proposed bears some similarity in principle
to what is called the cluster affinity search technique
(CAST) [20]. The input to CAST is a pair consisting of a
similarity matrix and an affinity threshold. The
algorithm is described in detail in [20]. Clusters are
constructed one at a time. Let Copen be the current cluster
under construction. The affinity of an element x with
respect to the current cluster is defined by

,
1

( ) ( )
n

p open p l l open
l

a C x C


   S (19)

An element xp has high affinity for Copen if

p opena t C  , otherwise it has low affinity. Elements

of low affinity are removed from Copen alternately with
the addition of high affinity elements. When there is no
further change the cluster is closed and a new cluster is
opened.
A potential modification of the preceding algorithm is to
start with a certain number of clusters, each with one
element, and add a new element to the cluster with which
it has maximum affinity with affinity defined as before.
That is an element is added to the cluster with which it
has maximum affinity. This is like k-means with affinity
defined as the inverse of the distance to the cluster
prototype.
We can modify (19) so that affinity of element xp for a
cluster, Ck, under consideration is a weighted average or
an average over the elements in the cluster
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The element xp is then added to the cluster with which it
has maximum affinity. We can normalize the affinities
by ensuring that the sum of the affinities of a pattern for
a cluster is one which gives us
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It becomes natural now to interpret the affinity of an
element for a cluster as the degree of membership in that

cluster. We also replace l kx C by its generalization

Ml,k which denotes degree of membership and we get
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The exponent m is used to control the degree of fuzziness
and is generally set to 2.

6 Quality of a Clustering Process and Quality of
Clusters

6.1 Introduction

Many functions have been proposed for validation of
fuzzy clustering [21-24] in case of fuzzy c-means when
feature vectors and prototypes are available but ones for
relational fuzzy clustering are rare.
A sample of some of the papers dealing with cluster
validation is presented by the list [18, 22, 23, 25-30].
Most of them either treat only crisp clustering or they
depend on determining centroids which is not possible
unless IO data is available.
There are two aspects to measuring quality as it relates to
clustering. One is the quality of the clustering process
and the other is the quality of the clusters. Determining
the quality of a clustering process is quite
straightforward when there is a correct partition to which
a comparison can be made. However that is generally
not so. Bezdek etal. [27] separate tendency towards
clustering ( clusterability) from validation. The first is
the tendency of the objects, based on data, towards
clustering. Clusterability is difficult to determine unless
the object’s feature vectors are 2-dimensional and there
is a visual representation of the interobject distances.
Thus ultimately the validity of the result of clustering is
best determined if visual clustering is supported by the
result of the automatic clustering. Therefore in this work
the OR data is also turned into two-dimensional IO data
for visualization. The result of clustering, as expressed
by the membership matrix, can then be compared to the
visual representation.
Cluster(ing) quality indices can be divided into those that
are only a function of the membership matrix that is
produced by clustering and those that also depend on the
proximity matrix. Cluster quality requires only the
membership matrix and clustering quality requires also
data that is input to the clustering process.
First we will discuss some cluster quality indices as ones
that should not be used here because of their limitations.
In these indices quality is measured by how close the
membership matrix is to a discriminant matrix. A

measure that is based only on the fuzzy membership as
proposed by Bezdek [31] and also by Roubens [4],
determines how close a fuzzy partition obtained by a
clustering algorithm is to being crisp. It is expressed by

2
,

1 1

( )
np nk

p k
p k

np

 
 M

(23)

Bezdek calls this the partition coefficient. It is the
average amount of membership sharing. Bezdek [31]
considers its monotonic tendency and the lack of a direct
connection to the object data to be its major
disadvantages. In normalized form it is equivalent to the
normalized form of a partition coefficient by Dunn [22].
A measure proposed by Roubens [4] also determines
how close a fuzzy partition is to a hard partition and is
also equivalent to the normalized form of Dunns [22]
partition coefficient. Another measure based only on the
partition or membership matrix is classification entropy
[32]. It expresses the amount of fuzziness in M. Low
values here means that the result of clustering is close to
being crisp. It does not take into account the proximity
matrix for the objects that are clustered.
A crisp partition is not however the desired outcome of
the clustering process if it does not reflect the true
partitioning structure of the data otherwise we would
always turn every fuzzy partition into a crisp partition as
its limiting case. (The membership matrix for the
limiting case is obtained by replacing the maximum
membership by one and the others by 0 for each object.)
The quality of the clustering process should be a function
of the proximity matrix( the input) and the membership
matrix (the output). The membership matrix should be a
reflection of the proximity matrix.
Following are some potential clustering quality indices
that do take proximity matrices into account. Dunn’s
validity index [18] for crisp clustering is the distance
between two clusters divided by the diameter of a
cluster. In Dunn’s particular case the distance between
two clusters is taken to be the smallest distance between
two objects with one object from each cluster and the
diameter of a cluster is the largest distance between two
objects from the same cluster. In the general expression
(24) i and j identify different versions of distance
between sets (clusters) and diameters of sets(clusters).
The indices k,k1,and k2 identify clusters.

1 2 1 2
1 2,

min ( , )

max
( )

k k
k k k k

j k

C C
i

V

C
k







(24)

Bezdek and Pal [27] consider a generalization of Dunn’s
index [18] for crisp clustering. They consider 6
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definitions of set distance and 3 definitions of set
diameter leading to 18 possibilities for crisp clustering
quality indices. The first 2 set definitions are too much
effected by outliers. The 4th and 5th require centroids of
sets and the 6th which is the Hausdorff definition of
distance between two sets is computationally intensive.
This leaves the 3rd definition for inter-cluster distance
that is defined as

1
( , ) ( , )avg

x S

y T

S T d x y
S T










(25)

i.e. the average distance between the elements of the two
sets.
The first definition of cluster diameter is too sensitive to
outliers and the last requires calculation of centroids.
This leaves the second that is defined by

,

1
( ) ( , )

( 1)

2

avg
x y S

x y

S d x y
S S 



 
  

(26)

6.2 Proposed Clustering Quality Index

We can easily generalize(25) and (26) to fuzzy clustering
by applying the membership matrix as in (27).
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(27)
For comparing the clustering methods in this paper the
following measure is used. It takes into account both the
proximity matrix and the result of clustering.
Expression (24) is modified to

1 2 1 2
1 2,

( , )

( )

k k
k k k k

j k

average C C
i

V
average

C
k








(28)

with the definitions in (27) for fuzzy clustering with m
replaced by 2.

7 Method for visualizing the relations between the
objects

The purpose of the visual clustering is to permit
comparison with the automatic clustering. For the visual

clustering the space is 2 dimensional. The visual
clustering permits a qualitative measure of the clustering
process by comparing the visual clustering to the
membership matrix that is obtained by automatic
clustering. This qualitative measure in turn can be
compared to the quantitative measure as obtained by
using (28).
A good visual representation should represent proximity
information, by positioning similar elements close to one
another and far from dissimilar ones. A visual
representation of the proximity matrix van be obtained
using multidimensional scaling (MDS) [33-39], which
includes a set of algorithms, given a proximity matrix,
for determining a set of vectors for the purpose of
exploratory data analysis. MDS algorithms look for an
arrangement of a set of objects such that the distance
between any two objects matches their given proximities
as closely as possible..
Only one of the many MDS algorithms, the SMACOF
algorithm, is discussed and used here.
SMACOF-IB [33, 40-42] is considered to be one of the
fastest, simplest, and elegant MDS algorithms. It
optimizes the sum of the squares of the errors between
the distances and the proximities. The algorithm below is
as it appears on page 155 in [33]. It is based on
majorizing the cost function (29).

2
, , ,

2
, , ,

1

( ) (( ( ))

( ) ( )

r i j i j i j
i j

m

i j i a j a
a

w d

d x x

 




  

 





X X

X

(29)

The matrix, X, contains the points as rows. The value of
i,j is the proximity ( dissimilarity in this case) between
objects Oi and Oj. Fixed weight wi,j are 1 if i,j are
known and 0 otherwise. Following is the complete
algorithm

Algorithm 2 SMACOF

The SMACOF algorithm may be summarized as
Initialization

Set components of Xnew to random values

Calculate ( )new X by (29)

Repeat
Xold←Xnew

( )old X ← ( )new X
Xnew ← Guttman transform of Xold

Calculate ( )new X by (29)

Until ( )old X - ( )new X <e or maximum allowable

iterations
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The Guttman transform is defined by (30)
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Fastmap [43] can also be used to provide a visual
representation if computational time is a very important
consideration. Unlike the MDS methods that have
quadratic time complexity, it has linear time complexity
but is not as accurate which in this case may not be an
issue. Nevertheless SMAKOV is used since it is more
common.

8 Simulations

8.1 Introduction

Simulations are done to compare the following 4
methods consisting of the proposed method and three
existing methods.

1. Proposed - FRFP with average distance
2. Existing

a. NERRFCM[3]
b. Roubens [4]
c. Windhams AP [5]

For fuzzy relational fixed point (FRFP) clustering all 3
formulations expressed by (15), (16) and (17) were
tested. The ones based on minimum(15) and average
(17) gave good results while the one based on maximum
gave very poor results. The results reported here are with
the use of (17) which is solved iteratively starting with a
random matrix for M. A value of 2 for m has been used
throughout. For proximity dissimilarity is used rather
than similarity.
The methods are compared on the basis of visual
clustering and the proposed quantitative measure. As the
ultimate test of clustering quality, the membership
matrices that are produced through automatic clustering
based on the proximity matrix, are examined to
determine how well they correspond to the visual
representation of the proximity matrices produced by
MDS. The quantitative clustering quality measure is in
turn validated by comparing its value to the result of the
qualitative visual comparison.

8.2 Simulation 1 using proximity matrix 1

The first proximity matrix is Windham’s, reproduced in
Table 1 [5] , that is also used by Bezdek et. al. in their
paper [6] in which the authors make comparisons
between RFCM, Roubens and Windhams clustering
algorithms. Rows and columns correspond to objects.

Table 1 Proximity matrix 1

0 6 3 6 11 25 44 72 69 72 100
6 0 3 11 6 14 28 56 47 44 72
3 3 0 3 3 11 25 47 44 47 69
6 11 3 0 6 14 28 44 47 56 72
11 6 3 6 0 3 11 28 25 28 44
25 14 11 14 3 0 3 14 11 14 25
44 28 25 28 11 3 0 6 3 6 11
72 56 47 44 28 14 6 0 3 11 6
69 47 44 47 25 11 3 3 0 3 3
72 44 47 56 28 14 6 11 3 0 6

100 72 69 72 44 25 11 6 3 6 0

The proximity matrix shows, by bolding of small
proximity values, that there are 3 clusters with objects 1-
5 in one cluster, object 6 in another cluster and objects
7-11 in the 3rd cluster. This was intended in the
generation of the proximity matrix. Figure 1 shows a
visual representation of the IO ( inter-object ) data
obtained by the SMACOF algorithm. The visual
representation supports the result of a visual inspection
of the proximity matrix but also shows other possible
partitions.

-30 -20 -10 0 10 20 30

-20

-10

0

10

20

Figure 1 Representation of proximity matrix1 in 2-D

The visual representation shows that there are 7 clusters
of sizes 1,3,1,1,1,3,1 or 5 clusters with sizes 4,1,1,1,4 or
3 clusters with sizes 4,3,4 or 3 clusters with sizes 5,1,5.
If two clusters are permitted than one object belongs
equally in both. The membership matrices in Table 2 for
2 clusters should bear this out. Bolded values are
maximum values. Rows correspond to objects and
columns correspond to clusters.
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Table 2 Membership matrices for the 5 methods for a
two cluster partition ( rows correspond to objects) for
proximity matrix 1

FRFP NERFCM Rouben Winham
0.05 0.95 1.00 0.00 0.83 0.17 0.09 0.91
0.08 0.92 1.00 0.00 0.82 0.18 0.10 0.90
0.07 0.93 1.00 0.00 0.83 0.17 0.05 0.95
0.08 0.92 1.00 0.00 0.82 0.18 0.10 0.90
0.17 0.83 1.00 0.00 0.80 0.20 0.15 0.85
0.50 0.50 0.33 0.67 0.72 0.28 0.50 0.50
0.83 0.17 0.00 1.00 0.64 0.36 0.85 0.15
0.92 0.08 0.00 1.00 0.64 0.36 0.90 0.10
0.93 0.07 0.00 1.00 0.62 0.38 0.95 0.05
0.92 0.08 0.00 1.00 0.64 0.36 0.90 0.10
0.95 0.05 0.00 1.00 0.64 0.36 0.91 0.09

Labeling of the objects in the membership matrices does
not necessarily correspond to the labelling of the objects
in the proximity matrix. The membership matrix for
FRFP correlates, visually, very well with the visual
representation. It is very easy to see the correspondence
between objects in the membership matrices for these
two methods and the points in Figure 1. There is a
symmetry in the membership matrix that corresponds to
the symmetry of the points representing the objects.
Object 6 fits equally well in both of the 2 clusters that are
allowed for in case of the proposed method and in case
of Windhams method but not so in the other 2 cases. In
case of the other objects all methods, except for
NERFCM, show that objects, although belonging
strongly to one cluster, also have some membership in
the other cluster. NERFCM has tended towards a hard
clustering. Table 3 shows the values for the clustering
quality index. NERFCM scores best although the result
is very close to that of the proposed method. The fact
that, by comparing the membership matrices to the visual
representation, the proposed method produced better
results is not completely borne out by the values of the
clustering index however. FRFP clearly provides the
clustering result that is much closer to that of the visual
representation. The average time over 20 runs for FRFP
is also the best.

Table 3 Average quality measures and execution times
for clustering using proximity matrix 1

Methods Clustering Quality times

FRFP 4.81 0.005
NERFCM 4.95 0.013
Rouben 1.34 0.019
Windham 2.21 0.011

8.2.1 Simulation 2 using proximity matrix 2
The second proximity matrix, shown in Table 4, is
obtained using Euclidian distance between randomly
generated feature vectors. The feature vectors are
generated so that they fall into 5 clusters of 3
approximately. Bolding of relative small proximity
values in the proximity matrix shows that there are 5
clusters of 3 as intended.

Table 4 Proximity matrix 2
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Following in Figure 2 is a 2-dimensional representation
of the proximity matrix produced by the SMACOF
algorithm.

-80 -60 -40 -20 0 20 40 60 80

-20

0

20

40

Figure 2 2-dimensional representation of proximity
matrix 2 produced by the SMACOF algorithm

Visually there are 5 well separated clusters as is also
apparent from the proximity matrix. The membership
matrices are as in Table 5. Maximum values have been
bolded.

Table 5 Membership matrices produced by the various
clustering methods for proximity matrix 2. Membership
values have been multiplied by 100, to reduce space. The
symbol * represents the value 100

O FRFP NERFCM Rouben Winham

1 1 3 9 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

2 1 3 8 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

3 1 2 9 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

4 2 5 5 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

5 2 5 4 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

6 2 5 4 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

7 2 8 2 4 4 0 * 0 0 0 1 1 2 2 1 2 1 2 2 1

8 2 8 2 5 4 0 * 0 0 0 1 1 2 2 1 2 1 2 2 1

9 2 8 2 4 5 0 * 0 0 0 1 1 2 2 1 2 1 2 2 2

1 5 4 1 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

1 5 4 1 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

1 5 5 2 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

1 8 2 1 5 2 0 0 * 0 0 2 6 2 2 1 2 2 1 2 1

1 8 2 1 5 2 0 0 * 0 0 2 7 2 2 1 2 2 1 2 1

1 8 3 1 6 2 0 0 * 0 0 2 7 2 2 1 2 2 1 2 1

1 1 3 9 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

1 1 3 8 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

1 1 2 9 2 5 * 0 0 0 0 1 1 3 2 1 1 1 2 1 2

1 2 5 5 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

2 2 5 4 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

2 2 5 4 2 8 0 0 0 0 * 1 1 3 2 1 1 1 2 1 2

2 2 8 2 4 4 0 * 0 0 0 1 1 2 2 1 2 1 2 2 1

2 2 8 2 5 4 0 * 0 0 0 1 1 2 2 1 2 1 2 2 1

2 2 8 2 4 5 0 * 0 0 0 1 1 2 2 1 2 1 2 2 2

2 5 4 1 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

2 5 4 1 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

2 5 5 2 8 2 0 0 0 * 0 2 7 2 2 1 2 2 1 2 1

2 8 2 1 5 2 0 0 * 0 0 2 6 2 2 1 2 2 1 2 1

2 8 2 1 5 2 0 0 * 0 0 2 7 2 2 1 2 2 1 2 1

3 8 3 1 6 2 0 0 * 0 0 2 7 2 2 1 2 2 1 2 1

Rouben’s and Windhams methods clearly fail in this
case. NERFCM has produced a crisp clustering rather
than a fuzzy clustering. The clustering quality index
supports the fact that, visually, FRFP produces a
membership matrix more in line with the visual
demonstration that shows that objects belong to more
than one cluster even though the degree is small except
for one cluster.

Table 6 Average Clustering Quality and times for data
set 2

Methods Clustering Quality Times
FRFP 12.08 0.0050
NERFCM 9.45 0.0125
Rouben 1.07 0.0200
Windham 1.05 0.145

Clearly FRPC is better both in terms of clustering quality
and computational times.

8.3 Simulation 3 proximity matrix 3

The third proximity matrix is randomly generated such
that the magnitude of the proximities falls approximately
into 3 ranges such that 3 clusters are apparent in the
proximity matrix as in Table 7.

Table 7 Proximity matrix 3
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There are 18 objects with 6 in each cluster according to
the proximity matrix. Figure 3 is a plot of the objects
obtained by the SMACOF algorithm.
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Figure 3 Plot of points corresponding to objects with
similar inter object distances as in proximity matrix 3

Both the proximity data and the visual representation
show 3 distinct clusters that we will number 1,2, and 3
from the bottom left corner to the top right corner. A
fuzzy membership matrix should show the following
properties to match the visual representation. Members
of visual cluster 1 should show a very dominant
membership in that cluster and a small membership in

cluster 2 and a still smaller membership in cluster 3. The
members of cluster 2 should show a strong membership
in that cluster and small but approximately equal
memberships in the other 2 clusters. Members of cluster
3 are like members of cluster 1.
Following, in Table 8, are the various membership
matrices obtained by clustering using proximity matrix 3.

Table 8 Membership matrices for proximity matrix 3.
Membership values have been multiplied by 100, to
reduce space except in the case where it is equal to 1.

FRFP NERFCM Rouben Windham
19 70 11 1 0 0 28 49 23 34 34 32
15 76 9 1 0 0 28 49 24 34 34 32
18 71 11 1 0 0 28 49 23 34 34 32
18 72 10 1 0 0 28 49 23 34 35 31
16 75 9 1 0 0 28 48 24 34 34 32
16 75 9 1 0 0 28 49 23 34 35 31
70 15 15 0 0 1 34 41 26 33 33 33
71 13 16 0 0 1 36 39 25 33 33 34
64 18 18 0 0 1 33 42 25 33 33 33
70 15 15 0 0 99 35 40 26 33 33 33
71 14 15 0 0 1 34 40 26 33 33 33
62 18 19 0 0 1 34 41 25 33 33 33
19 10 71 0 1 0 46 30 24 33 32 35
19 11 70 0 1 0 44 32 24 33 32 35
18 10 72 0 1 0 45 31 24 33 32 35
19 10 71 0 1 0 45 31 24 33 32 35
16 9 75 0 1 0 46 30 24 33 32 35
17 10 73 0 1 0 45 31 24 33 32 35

The membership matrix for NERFCM is obviously a
poor expression of visual clustering as are the ones for
Rouben and Windham methods. This is supported by the
clustering quality values in this case as shown in Table 9.
If we examine Table 7 we see 3 sets of points. In one
set, the points belong very strongly to one cluster and
much less so , but equally so, to the other 2 clusters. In
case of the other 2 sets the points belong very strongly to
one cluster, a little to the other cluster, and hardly at all
to the remaining cluster. This is borne out by the
membership matrix for FRFDC.

Table 9 Clustering and cluster quality measures for
proximity matrix 3

Methods Clustering Quality Times
FRFP 3.04 0.0000
NERFCM 3.81 0.0100
Rouben 1.08 0.0200
Windham 1.00 0.0100

.

FRFP produced a better membership matrices than
NERFCM which produced a crisp partition that is not
supported by a visual inspection of the proximity matrix.
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8.4 Simulation 4

For this simulation the clustering was repeated 100 times
for each of the 3 types ( proximity matrices 1 to 3) of
proximity matrices used in the previous simulations.
The results are shown in Table 10 to Table 12.

Table 10 Averages of 100 trials using proximity matrix
1 each time

Methods Clustering Quality Times
FRFP 4.81 0.00180
NERFCM 4.94 0.00872
Rouben 1.73 0.00810
Windham 2.54 0.00651

.

Table 11 Averages of 100 trials using proximity matrices
similar to proximity matrix 2

Methods Clustering Quality Times
FRFP 13.96 0.00342
NERFCM 11.14 0.00651
Rouben 1.08 0.01020
Windham 1.06 0.00661

Table 12 Averages of 100 trials using proximity matrices
similar to proximity matrix 3 but with 72 objects each
time.

Methods Clustering Quality Times
FRFP 2.01 0.01171
NERFCM 2.98 0.01644
Rouben 1.01 0.02105
Windham 1.00 0.01644

On average FRFP and NERFCM are about equivalent
in terms of the quantitative measure of clustering quality.

8.5 Simulation 5

Following are execution times when the clustering
methods are applied to proximity matrices generated the
same way as proximity matrix 3 with different numbers
of objects to get an idea of time complexity. The times
are averages over 100 trials for each object set
cardinality.

Table 13 Execution times for several trials for various
sized proximity matrices of type 3

#
objects

FRFP NERFCM Rouben Windham

18 0.00370 0.01063 0.01562 0.01250
36 0.00510 0.01141 0.01582 0.01191
72 0.00411 0.01080 0.01471 0.01204
144 0.03863 0.05939 0.05374 0.06102
288 0.15090 0.25831 0.21871 0.25101

This again shows that FRFP is most efficient.

9 Summary and Conclusion

A method (FRFP) of relational clustering that is based on
solving a function of the membership matrix for a fixed
point is in several cases superior to NERFCM. FRFP
produces membership matrices that are a better
representation of the proximity matrices, that is the input
to the automatic clustering, according to a visual
inspection of the proximity matrix, the 2–dimensional
representation of the proximity matrix and the
membership matrix that is the output of the automatic
clustering. A distinction has been made between
clustering quality and cluster quality. NERFCM has a
strong tendency to produce crisp clusters that may not
accurately reflect the inter-object proximities. The
quantitative clustering quality measure proposed in this
paper also appears to favour crisp clusters to some
degree and needs to be improved. As has been
demonstrated here, ultimately a good way of evaluating
the result of clustering is to produce a visual
representation and compare it to the membership matrix
that is produced.
In addition to providing improved clustering quality,
FRFP is also more computationally efficient than the
other algorithms. Future work may consist of using
general knowledge about solving for fixed points to
further improve the efficiency of the clustering
algorithm.
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