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Abstract

This paper considers the robust stability analysis problem for a class of uncertain stochastic neural net-
works with time-varying delay. Based on the Lyapunov functional method, and by resorting to the new
technique for estimating the upper bound of the stochastic derivative of Lyapunov functionals, the novel
asymptotic stability criteria are obatined in terms of Linear matrix inequalities (LMIs). Two numerical
examples are presented to show the effectiveness and the less conservativeness of the proposed method.
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1. Introduction

The dynamics of neural networks has been exten-
sively investigated in the past two decades due to
their extensive applications in various signal pro-
cessing problems such as optimization, fixed-point
computations, and other areas. Among the most
popular models in the literature of artificial neural
networks is the continuous time model described by
the following ordinary differential equations1

Ci
dui(t)

dt
=−ui(t)

Ri
+

n

∑
j=1

Ti jg j(u j(t))+ Ii,

i = 1,2, · · · ,n, (1)

where ui(t) denotes the voltage on the input of neu-
ron i at time t; Ci > 0 and Ri > 0 are the neuron am-
plifier input capacitance and resistance, respectively;

Ii is the constant input from outside the system; ma-
trix Ti j is assumed to be irreducible, i.e. the network
is strongly connected; function g j is the neuron acti-
vation function. This model was proposed by Hop-
field with an electrical circuit implementation, and is
referred to in the literature as a Hopfield-type neural
network. In hardware implementation, time delay
occurs due to the finite switching speeds of the am-
plifiers, which may induce the undesirable dynamic
network behaviors such as oscillation, instability or
other poor performances. Marcus and Westervelt2

introduced firstly a single time delay τ into (1). They
considered the following system

Ci
dui(t)

dt
=−ui(t)

Ri
+

n

∑
j=1

Ti jg j(u j(t− τ))+ Ii,

i = 1,2, · · · ,n. (2)
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System (2) can be extended to the following models

dui(t)
dt

=−aiui(t)+
n

∑
j=1

bi jg j(u j(t− τ(t)))+ Ii,

i = 1,2, · · · ,n, (3)

and

dui(t)
dt

= −ciui(t)+
n

∑
j=1

ai jg j(u j(t))

+
n

∑
j=1

bi jg j(u j(t− τ(t)))+ Ii,

i = 1,2, · · · ,n, (4)

where τ(t) denotes constant or time-varying delay.
The stability analysis problem for delayed neural
networks (3) and (4) has received great attention dur-
ing the past years3−14. These obtained results can
be classified into two types: delay-independent sta-
bility criteria and delay-dependent stability criteria.
The former do not make use of information on the
size of delay while the latter include such informa-
tion. It is known that delay-dependent stability con-
ditions are generally less conservative than delay-
independent ones especially when the size of the de-
lay is small.

On the other hand, in real nervous systems, the
synaptic transmission is a noisy process brought on
by random fluctuations from the release of neuro-
transmitters and other probabilistic causes, and it has
been realized that a neural network could be stabi-
lized or destabilized by certain stochastic inputs15

which leads to the research on dynamics of stochas-
tic neural networks16−23. The robust stability cri-
teria were established in Refs.18 and 19 for uncer-
tain stochastic Hopfield neural networks with con-
stant and time-varying delays. In Ref.23, the delay-
dependent robust stability analysis problem was in-
vestigated for uncertain stochastic neural networks
with time-varying delay. The restrictions that the
time-varying delay was differentiable and its deriva-
tive was less than one are removed in Ref. 23. How-
ever, the useful terms are ignored and the enlarge-
ment method is rather conservative in Ref. 23 when
estimating the upper bound of the stochastic deriva-
tive of Lyapunov functionals.

In this paper, the delay-dependent robust stabil-
ity problem is investigated for a class of uncertain
stochastic neural networks with time-varying delay.
Based on the Lyapunov functional method, and by
reserving the useful terms when estimating the up-
per bound of the derivative of Lyapunov functionals,
the novel stability criteria are established in terms of
LMIs. Finally, two numerical example are presented
to show that our results are less conservative than
some existing ones.

Notation. The superscript “T ” stands for the trans-
pose of a matrix. Rn and Rn×n denote the n-
dimensional Euclidean space and set of all n× n
real matrices, respectively. A real symmetric ma-
trix X > 0(> 0) denotes X being a positive definite
(positive semi-definite) matrix. (Ω,F ,P) denotes
a complete probability space, where Ω is a sam-
ple space, F is the σ -algebra subsets of the sample
space and P is the probability measure on F . De-
note by L2

F0
([−τ,0];Rn) the family of all F0 mea-

surable C([−τ,0];Rn)-valued random variables φ =
{φ(t) : −τ 6 t 6 0} such that sup−τ6t60 E|φ(t)|2 <
∞, where E{.} stands for the mathematical expecta-
tion operator with respect to P. I is used to denote an
identity matrix with proper dimension. Matrices, if
not explicitly stated, are assumed to have compatible
dimensions. The symmetric terms in a symmetric
matrix are denoted by ∗.

2. Problem formulation

Consider the following uncertain stochastic neural
network with time-varying delay described by

dx(t) =[−(A+∆A)x(t)+(W0 +∆W0) f (x(t))

+(W1 +∆W1) f (x(t− τ(t)))]dt

+[(C +∆C)x(t)+(D+∆D)

× x(t− τ(t))]dω(t), (5)

where x(t) = [x1(t), x2(t), · · · ,xn(t)]T ∈ Rn is the
neuron state vector, and τ(t) is the time-varying de-
lay which satisfies 0 6 τ(t) 6 τ, τ̇(t) 6 µ. f (x(·)) =
[ f1(x1(·)) f2(x2(·)), · · · , fn(xn(·))]T ∈ Rn is the acti-
vation function, ω(t) = [ω1(t), ω2(t), · · · ,ωm(t)]T ∈
Rm is a m-dimensional Brownian motion defined
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on a complete probability space (Ω,F ,P). A =
diag{a1,a2, · · · ,an} is a diagonal matrix with ai > 0,
and W0, W1 are the connection weight matrix and
the delayed weight matrix, respectively. C and D
are known real constant matrices. ∆A,∆W0,∆W1,∆C
and ∆D denote the time-varying parameter uncer-
tainties and are of the following form

[
∆A ∆W0 ∆W1 ∆C ∆D

]

= HF(t)
[
E1 E2 E3 E4 E5

]
, (6)

where H,E1,E2,E3,E4,E5 are known real con-
stant matrices with appropriate dimensions, and
F(t) is unknown time-varying matrix satisfying
FT (t)F(t) 6 I.

Throughout the paper, we make the following as-
sumptions on the activation function in the delayed
stochastic neural networks (5).

Assumption 2.1 Activation function f (.) : Rn → Rn

is bounded and satisfies

‖ f (x)‖6 ‖Gx(t)‖, (7)

for any x(t)∈R, where G∈Rn×n is a known matrix.

Assumption 2.2 Each activation function fi(.) : R→
R is bounded and satisfies

0 6 fi(ζ1)− fi(ζ2)
ζ1−ζ2

6 ki, i = 1,2, · · · ,n, (8)

for any ζ1,ζ2 ∈ R, ζ1 6= ζ2, where ki > 0 for i =
1,2, · · · ,n.

Let x(t;φ) denote the state trajectory of stochas-
tic neural network (1) from the initial function x(t)=
φ(t) on −τ 6 t 6 0 in L2

F0
([−τ,0];Rn). Under the

assumption 2.1, it follows from Ref. 25 that the sys-
tem (5) admits a trivial solution x(t;0) = 0.

Before giving the main results, we will firstly in-
troduce the following definition and lemmas.

Definition 2.3 The trivial solution of the stochastic
neural network (5) is said to be globally robustly
asymptotically stable in the mean square, if for all
admissible uncertainties satisfying (6), the follow-
ing equation holds

lim
t→∞

E|x(t;φ)|2 = 0.

Lemma 2.4 For any real vectors a, b and any matrix
Q > 0 with appropriate dimensions, it follows that

2aT b 6 aT Qa+bT Q−1b.

Lemma 2.519 For given matrices H,E and F with
FT F 6 I and scalar ε > 0, the following inequality
holds

HFE +ET FT HT 6 ε−1HHT + εET E.

3. Main results

In this section, we will firstly present the global
asymptotic stability criterion of the following nomi-
nal system without uncertainties, this is

dx(t) =[−Ax(t)+W0 f (x(t))+W1 f (x(t− τ(t)))]dt

+[Cx(t)+Dx(t− τ(t))]dω(t). (9)

Theorem 3.1 For given constants τ > 0, µ > 0.
Under Assumption 2.1, the system (9) is globally
asymptotically stable in the mean square, if there ex-
ist matrices P > 0,Q1 > 0,Q2 > 0,Q3 > 0,R > 0,S >
0,Mi,Ni,(i = 1,2, · · · ,5), and scalars α > 0,β > 0,
such that the following linear matrix inequalities
(LMIs) hold

Γ1 < 0, (10)

Γ2 < 0, (11)

where

Γ1 =




Ω τΞT
1 R ΞT

2 P τΞT
2 S MT NT τMT

∗ −τR 0 0 0 0 0
∗ ∗ −P 0 0 0 0
∗ ∗ ∗ −τS 0 0 0
∗ ∗ ∗ ∗ −S 0 0
∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −τR




,

Γ2 =




Ω τΞT
1 R ΞT

2 P τΞT
2 S MT NT τNT

∗ −τR 0 0 0 0 0
∗ ∗ −P 0 0 0 0
∗ ∗ ∗ −τS 0 0 0
∗ ∗ ∗ ∗ −S 0 0
∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −τR




,
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Ω =




Ω11 Ω12 Ω13 Ω14 Ω15
∗ Ω22 Ω23 Ω24 Ω25
∗ ∗ Ω33 −NT

4 −NT
5

∗ ∗ ∗ Ω44 Ω45
∗ ∗ ∗ ∗ Ω55




,

Ξ1 =
[−A 0 0 W0 W1

]
,

Ξ2 =
[
C D 0 0 0

]
,

M =
[
MT

1 MT
2 MT

3 MT
4 MT

5

]
,

N =
[
NT

1 NT
2 NT

3 NT
4 NT

5

]
,

and

Ω11 =−PA−AT PT +Q1 +Q2 +M1

+MT
1 +αGT G,

Ω12 =−M1 +MT
2 +N1,

Ω13 = MT
3 −N1,

Ω14 = PW0 +MT
4 ,

Ω15 = PW1 +MT
5 ,

Ω22 =−(1−µ)Q1−M2−MT
2 +N2

+NT
2 +βGT G,

Ω23 =−MT
3 −N2 +NT

3 ,

Ω24 =−MT
4 +NT

4 ,

Ω25 =−MT
5 +NT

5 ,

Ω33 =−N3−NT
3 −Q2,

Ω44 =−αI +Q3,

Ω55 =−β I− (1−µ)Q3.

Proof. Set y(t) =−Ax(t)+W0 f (x(t))+W1 f (x(t−
τ(t))) and g(t) = Cx(t)+ Dx(t− τ(t)), then system
(9) becomes

dx(t) = y(t)dt +g(t)dω(t) (12)

Construct the following Lyapunov-Krasovskii func-
tional described as

V (x(t), t) =
4

∑
i=1

Vi(x(t), t), (13)

where

V1(x(t), t) =xT (t)Px(t),

V2(x(t), t) =
∫ 0

−τ

∫ t

t+θ
yT (s)Ry(s)dsdθ ,

V3(x(t), t) =
∫ 0

−τ

∫ t

t+θ
gT (s)Sg(s)dsdθ ,

V4(x(t), t) =
∫ t

t−τ(t)
xT (s)Q1x(s)ds

+
∫ t

t−τ
xT (s)Q2x(s)ds

+
∫ t

t−τ(t)
f T (x(s))Q3 f (x(s))ds.

The weak infinitesimal operator L of the stochastic
process {x(t), t > 0} is given by

LV1 =2xT (t)Py(t)+gT (t)Pg(t)

=2xT (t)P
[−Ax(t)+W0 f (x(t))

+W1 f (x(t− τ(t)))
]

+[Cx(t)+Dx(t− τ(t))]T

×P[Cx(t)+Dx(t− τ(t))], (14)

LV2 =τyT (t)Ry(t)−
∫ t

t−τ
yT (s)Ry(s)ds

=τ[−Ax(t)+W0 f (x(t))+W1 f (x(t− τ(t)))]T

×R[−Ax(t)+W0 f (x(t))

+W1 f (x(t− τ(t)))]−
∫ t

t−τ(t)
yT (s)Ry(s)ds

−
∫ t−τ(t)

t−τ
yT (s)Ry(s)ds, (15)

LV3 =τgT (t)Sg(t)−
∫ t

t−τ
gT (s)Sg(s)ds

=τ[Cx(t)+Dx(t− τ(t))]T

×S[Cx(t)+Dx(t− τ(t))]

−
∫ t

t−τ(t)
gT (s)Sg(s)ds

−
∫ t−τ(t)

t−τ
gT (s)Sg(s)ds, (16)

LV4 =xT (t)(Q1 +Q2)x(t)+ f T (x(t))Q3 f (x(t))

− (1− τ̇(t))xT (t− τ(t))Q1x(t− τ(t))

− xT (t− τ)Q2x(t− τ)

− (1− τ̇(t)) f T (x(t− τ(t)))Q3 f (x(t− τ(t)))

6xT (t)(Q1 +Q2)x(t)+ f T (x(t))Q3 f (x(t))

− (1−µ)xT (t− τ(t))Q1x(t− τ(t))
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− xT (t− τ)Q2x(t− τ)− (1−µ)

× f T (x(t− τ(t)))Q3 f (x(t− τ(t))). (17)

By Assumption 2.1, it is well known that there ex-
ist positive constants α > 0 and β > 0 such that the
following inequalities hold

α[xT (t)GT Gx(t)− f T (x(t)) f T (x(t))] > 0, (18)

β [xT (t− τ(t))GT Gx(t− τ(t))

− f T (x(t− τ(t))) f (x(t− τ(t)))] > 0. (19)

From (12), it follows that x(t) − x(t −
τ(t)) − ∫ t

t−τ(t) y(s)ds − ∫ t
t−τ(t) g(s)dw(s) = 0

and x(t − τ(t)) − x(t − τ) − ∫ t−τ(t)
t−τ y(s)ds −

∫ t−τ(t)
t−τ g(s)dw(s) = 0, then for any matri-

ces M =
[
MT

1 MT
2 MT

3 MT
4 MT

5

]
and N =[

NT
1 NT

2 NT
3 NT

4 NT
5

]
, we can obtain

2ξ T (t)MT
[

x(t)− x(t− τ(t))−
∫ t

t−τ(t)
y(s)ds

−
∫ t

t−τ(t)
g(s)dw(s)

]
= 0, (20)

2ξ T (t)NT
[

x(t− τ(t))− x(t− τ)−
∫ t−τ(t)

t−τ
y(s)ds

−
∫ t−τ(t)

t−τ
g(s)dw(s)

]
= 0, (21)

where ξ T (t) =
[
xT (t) xT (t − τ(t)) xT (t −

τ) f T (x(t)) f T (x(t − τ(t))
]
. By Lemma 2.4, we

have

−2ξ T (t)MT
∫ t

t−τ(t)
y(s)ds

6 τ(t)ξ T (t)MT R−1Mξ (t)

+
∫ t

t−τ(t)
yT (s)Ry(s)ds, (22)

−2ξ T (t)NT
∫ t−τ(t)

t−τ
y(s)ds

6 (τ− τ(t))ξ T (t)NT R−1Nξ (t)

+
∫ t−τ(t)

t−τ
yT (s)Ry(s)ds, (23)

−2ξ T (t)MT
∫ t

t−τ(t)
g(s)dw(s)

6 ξ T (t)MT S−1Mξ (t)

+
(∫ t

t−τ(t)
g(s)dw(s)

)T

S
∫ t

t−τ(t)
g(s)dw(s),

(24)

−2ξ T (t)NT
∫ t−τ(t)

t−τ
g(s)dw(s)

6 ξ T (t)NT S−1Nξ (t)

+
(∫ t−τ(t)

t−τ
g(s)dw(s)

)T

S
∫ t−τ(t)

t−τ
g(s)dw(s).

(25)

By considering (14)-(25), then we can eventually
obtain

LV 6LV1(t)+LV2(t)+LV3(t)+LV4(t)

+α[xT (t)GT Gx(t)− f T (x(t)) f T (x(t))]

+β [xT (t− τ(t))GT Gx(t− τ(t))

− f T (x(t− τ(t))) f (x(t− τ(t)))]

+2ξ T (t)MT
[

x(t)− x(t− τ(t))

−
∫ t

t−τ(t)
y(s)ds−

∫ t

t−τ(t)
g(s)dw(s)

]

+2ξ T (t)NT
[

x(t− τ(t))− x(t− τ)

−
∫ t−τ(t)

t−τ
y(s)ds−

∫ t−τ(t)

t−τ
g(s)dw(s)

]

6ξ T (t)
[
Ξ+ τ(t)MT R−1M

+(τ− τ(t))NT R−1N
]
ξ (t)

−
∫ t

t−τ(t)
gT (s)Sg(s)ds

−
∫ t−τ(t)

t−τ
gT (s)Sg(s)ds

+
(∫ t

t−τ(t)
g(s)dw(s)

)T

S
∫ t

t−τ(t)
g(s)dw(s)

+
(∫ t−τ(t)

t−τ
g(s)dw(s)

)T

S
∫ t−τ(t)

t−τ
g(s)dw(s),

=ρ1(t)ξ T (t)
[
Ξ+ τMT R−1M

]
ξ (t)

+ρ2(t)ξ T (t)
[
Ξ+ τNT R−1N

]
ξ (t)
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−
∫ t

t−τ(t)
gT (s)Sg(s)ds−

∫ t−τ(t)

t−τ
gT (s)Sg(s)ds

+
(∫ t

t−τ(t)
g(s)dw(s)

)T

S
∫ t

t−τ(t)
g(s)dw(s)

+
(∫ t−τ(t)

t−τ
g(s)dw(s)

)T

S
∫ t−τ(t)

t−τ
g(s)dw(s),

(26)

where

Ξ =Ω+ τΞT
1 RΞ1 +ΞT

2 (P+ τS)Ξ2

+MT S−1M +NT S−1N,

ρ1(t) =τ(t)/τ, ρ2(t) = (τ− τ(t))/τ,

ξ (t) =
[
xT (t) xT (t− τ(t)) xT (t− τ) f T (x(t))

f T (x(t− τ(t))
]T

,

and Ω,M,N,Ξ1,Ξ2 are defined in Theorem 3.1.
Since

E
{∫ t

t−τ(t)
gT (s)Sg(s)ds

}

= E
{(∫ t

t−τ(t)
g(s)dw(s)

)T

S
∫ t

t−τ(t)
g(s)dw(s)

}
,

(27)

E
{∫ t−τ(t)

t−τ
gT (s)Sg(s)ds

}

= E
{(∫ t−τ(t)

t−τ
g(s)dw(s)

)T

S
∫ t−τ(t)

t−τ
g(s)dw(s)

}
,

(28)

Thus, if the matrix inequalities Ξ+ τMT R−1M < 0,
and Ξ + τNT R−1N < 0, then there exists a scalar
λ > 0 such that

E
[
LV (x(t), t)

]
6−λE|x(t)|2, (29)

which implies that system (9) is asymptotically
stable. Using Schur complement, (10) and (11)
are equivalent to Ξ + τMT R−1M < 0 and Ξ +
τNT R−1N < 0, respectively. This completes the
proof.

Remark 3.2 In Ref.23, the terms−∫ t
t−τ yT (s)Ry(s)ds

and −∫ t
t−τ gT (s)Sg(s)ds were simply enlarged as

−∫ t
t−τ(t) yT (s)Ry(s)ds and −∫ t

t−τ(t) gT (s)Sg(s)ds,

respectively. In this paper, −∫ t−τ(t)
t−τ yT (s)Ry(s)ds

and −∫ t−τ(t)
t−τ gT (s)Sg(s)ds are reserved and the in-

formation on them are used.

Remark 3.3 In order to obtain the less conserva-
tive result, the sufficient condition for guaranteeing
Ξ + τ(t)MT R−1M + (τ − τ(t))NT R−1N < 0 is not
simply given by Ξ + τMT R−1M + τNT R−1N < 0 ,
but handled by two less conservativeness matrix in-
equalities Ξ+τMT R−1M < 0, and Ξ+τNT R−1N <
0. The proposed method is so effective to reduce the
conservativeness which will be illustrated by numer-
ical examples.

Now, we will provide the robust stability cri-
terion for uncertain neural networks (5) with the
uncertainties satisfying (6).

Theorem 3.4 For given constants τ > 0, µ > 0.
Under Assumption 2.1, the system (5) is globally
robustly asymptotically stable in the mean square,
if there exist matrices P > 0,Q1 > 0,Q2 > 0,Q3 >
0,R > 0,S > 0,Mi,Ni,(i = 1,2, · · · ,5), and scalars
α > 0,β > 0,ε1 > 0,ε2 > 0,ε3 > 0,ε4 > 0, such that
the following LMIs hold




Γ1 H1 H2 ε1ET
1 ε2ET

2
∗ −ε1I 0 0 0
∗ ∗ −ε2I 0 0
∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ −ε2I




< 0, (30)




Γ2 H1 H2 ε3ET
1 ε4ET

2
∗ −ε3I 0 0 0
∗ ∗ −ε4I 0 0
∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ −ε4I




< 0, (31)

where Γ1, Γ2 are defined in (10), (11), and

H1 =
[
HT P 0 0 0 0 τHT R 0 0 0 0 0

]T
,

H1 =
[
0 0 0 0 0 0 HT P τHT S 0 0 0

]T
,

E1 =
[−E1 0 0 E2 E3 0 0 0 0 0 0

]
,

E2 =
[
E4 E5 0 0 0 0 0 0 0 0 0

]
.

Proof. If we replace A,W0,W1,C,D with A +

HF(t)E1,W0 + HF(t)E2,W1 + HF(t)E3,C +
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HF(t)E4, and D+HF(t)E5, respectively, then LMIs
(10) and (11) are transformed into

Γ1 +H1F(t)E1 +ET
1 FT (t)HT

1 +H2F(t)E2

+ET
2 FT (t)HT

2 < 0, (32)

Γ2 +H1F(t)E1 +ET
1 FT (t)HT

1 +H2F(t)E2

+ET
2 FT (t)HT

2 < 0. (33)

According to the proof of Theorem 3.1, if inequal-
ities (32),(33) hold, it is obvious that the uncer-
tain stochastic neural networks (1) is globally ro-
bustly asymptotically stable in the mean square. By
Lemma 2.5, for any scalars ε1 > 0,ε2 > 0,ε3 >
0,ε4 > 0, we have

Γ1 +H1F(t)E1 +ET
1 FT (t)HT

1 +H2F(t)E2

+ET
2 FT (t)HT

2

6 Γ1 + ε−1
1 H1HT

1 + ε1ET
1 E1 + ε−1

2 H2HT
2

+ ε2ET
2 E2, (34)

Γ2 +H1F(t)E1 +ET
1 FT (t)HT

1 +H2F(t)E2

+ET
2 FT (t)HT

2

6 Γ2 + ε−1
3 H1HT

1 + ε3ET
1 E1 + ε−1

4 H2HT
2

+ ε4ET
2 E2. (35)

Therefore, if Γ1 + ε−1
1 H1HT

1 + ε1ET
1 E1 +

ε−1
2 H2HT

2 + ε2ET
2 E2 < 0, and Γ2 + ε−1

3 H1HT
1 +

ε3ET
1 E1 + ε−1

4 H2HT
2 + ε4ET

2 E2 < 0, then (32)
and (33) hold. By Schur complement, (30) and
(31) are equivalent to Γ1 + ε−1

1 H1HT
1 + ε1ET

1 E1 +
ε−1

2 H2HT
2 + ε2ET

2 E2 < 0, and Γ2 + ε−1
3 H1HT

1 +
ε3ET

1 E1 + ε−1
4 H2HT

2 + ε4ET
2 E2 < 0, respectively.

This completes the proof.

As a especial case, we consider the robust stabil-
ity of the following neural network

ẋ(t) =− (A+∆A)x(t)+(W0 +∆W0) f (x(t))

+(W1 +∆W1) f (x(t− τ(t))), (36)

where the activation function f (.) satisfies Assump-
tion 2.2.

Theorem 3.5 For given constants τ > 0, µ > 0,
and diagonal matrix K = diag{k1,k2, · · · ,kn}. Un-
der Assumption 2.2, the system (36) is globally ro-
bustly asymptotically stable, if there exist matrices
P > 0,Q1 > 0,Q2 > 0,Q3 > 0,R > 0,Mi,Ni,(i =
1,2, · · · ,5), diagonal matrices D1 > 0, D2 > 0, and
scalars α > 0,β > 0,ε1 > 0,ε2 > 0, such that the
following LMIs hold




Σ τM̃T H̃ ε1ẼT

∗ −τR 0 0
∗ ∗ −ε1I 0
∗ ∗ ∗ −ε1I


 < 0, (37)




Σ τÑT H̃ ε1ẼT

∗ −τR 0 0
∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I


 < 0, (38)

where

Σ =




Σ11 Σ12 Σ13 Σ14 Σ15 −τAT R
∗ Σ22 Σ23 Σ24 Σ25 0
∗ ∗ Σ33 −NT

4 −NT
5 0

∗ ∗ ∗ Σ44 Σ45 τW T
0 R

∗ ∗ ∗ ∗ Σ55 τW T
1 R

∗ ∗ ∗ ∗ ∗ −τR




,

M̃ =
[
MT

1 MT
2 MT

3 MT
4 MT

5 0
]
,

Ñ =
[
NT

1 NT
2 NT

3 NT
4 NT

5 0
]
,

H̃ =
[

HT P 0 0 0 0 τHT R
]T

,

Ẽ =
[ −E1 0 0 E2 E3 0

]
,

and

Σ11 =−PA−AT PT +Q1 +Q2 +M1 +MT
1 ,

Σ12 =−M1 +MT
2 +N1,

Σ13 = MT
3 −N1,

Σ14 = PW0 +MT
4 +KL1,

Σ15 = PW1 +MT
5 ,

Σ22 =−(1−µ)Q1−M2−MT
2 +N2 +NT

2 ,

Σ23 =−MT
3 −N2 +NT

3 ,

Σ24 =−MT
4 +NT

4 ,
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Σ25 =−MT
5 +NT

5 +KL2,

Σ33 =−N3−NT
3 −Q2,

Σ44 =−2L1 +Q3,

Σ55 =−2L2− (1−µ)Q3.

Proof. Choosing Lyapunov-Krasovskii functional

V (x(t), t) = V1(x(t), t) + V2(x(t), t) + V4(x(t), t),
where V1(x(t), t),V2(x(t), t), and V4(x(t), t) are de-
fined in (13). By Assumption 2.2, it is well known
that there exist diagonally matrices D1 > 0, D2 > 0
such that the following inequalities hold

2
[
xT (t)KL1 f (x(t))− f T (x(t))L1 f (x(t))

]
> 0,

(39)

2
[
xT (t− τ(t))KL2 f (x(t− τ(t)))

− f T (x(t− τ(t)))L2 f (x(t− τ(t)))
]
> 0. (40)

According to the proof of Theorems 3.1 and 3.4, the
Theorem 3.5 can be easily obtained.

Remark 3.6 When time-varying delay τ(t) is not
differentiable, the stability criteria can be easily ob-
tained by setting Q1 = 0, Q3 = 0 in Theorems 3.1
and 3.4-3.5.

4. Numerical Examples

Example 4.1 Consider the neural networks
(36) with time-varying delay and the following
parameters12

A =
[

2 0
0 2

]
, W0 =

[
1 1
−1 −1

]
, W1 =

[
0.88 1

1 1

]
,

∆A = 0, ∆W0 = 0, ∆W1 = 0, k1 = 0.4, k2 = 0.8.

For this example, the corresponding maximum
allowable delay bounds τ for various µ can be ob-
tained by using Theorem 3. For a detailed compar-
ison with the results in Refs.12-14, we made Table
1. According to Table 1, it is seen that Theorem 3.5
improves some existing results12−14.

Table 1. delay bounds for different µ .

µ 0.8 0.9 unknown
Refs.12 and 13 1.2281 0.8636 0.8298

Ref.14 1.6831 1.1493 1.0880
Theorem 3.5 2.3534 1.6050 1.5103

Example 4.2 Consider the stochastic neural net-
works (1) with the following parameters24

A =
[

4 0
0 5

]
, W0 =

[
0.4 −0.7
0.1 0

]
,

W1 =
[−0.2 0.6

0.5 −0.1

]
, C =

[
0.5 0
0 0.5

]
,

D =
[

0.5 −0.5
−0.5 0

]
, G = 0.5I,

H = [0.1 −0.1]T , E1 = [0.2 0.3],

E2 = [0.2 −0.3], E3 = [−0.2 −0.3],

E4 = [0 0], E5 = [0 0],

and time-varying delay satisfying 0 6 τ(t) 6 τ .
For this example, the results in Refs.18-19 can

not conclude whether this system is asymptotically
or not. Applying the result in Ref.23 to this sys-
tem, the achieved maximum allowable delay bound
is τ = 0.4109. However, using Theorem 3.4 in this
paper with Q1 = Q3 = 0, we can obtain the larger
allowable delay bound τ = 0.8255. For this exam-
ple, it is obvious that the results in this paper are less
conservative than those in Refs.18,19 and 23.

5. Conclusion

In this paper, the robust stability problem is investi-
gated for a class of uncertain stochastic neural net-
works with time-varying delay and parameter uncer-
tainties. By using the Lyapunov functional method
and by resorting to the novel enlargement method
for estimating the upper bound of the stochastic
derivative of Lyapunov functional, we obtain the less
conservative stability criteria in terms of linear ma-
trix inequalities (LMIs). Finally, two numerical ex-
amples are given to show the effectiveness and ben-
efits of the proposed method.
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