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Abstract—A one-dimensional quantum four-state Potts 
model is investigated in the context of a tensor network 
algorithm based on the infinite matrix product state 
representation. The local order parameter and entanglement 
entropy are computed. The scalling for the maximal entropy 
of the four-state Potts model is unveiled. The critical points 
are given, which is well agree with other know results. 
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I. INTRODUCTION 
In condense matter physics, quantum phase transitions 

imply fluctuations, which happened at the zero 
temperature [1]. In recent years, low-dimensional 
quantum magnets have received much attention in 
condensed matter physics. In particular, one-
dimensional(1D) quantum spin chains with competing 
interactions that show exotic physical properties have 
been extensively studied in the past decades. The Potts 
model plays an essential role in classical and quantum 
statistical mechanics. The q-state Potts model [2, 3] is a 
generalization of the Ising model that is the two state Potts 
model. Baxter [4] calculated the free energy of the Potts 
model at the critical temperature, and showed that the 
model has a continuous phase transition for q ≤ 4 , and 
and has a first-order phase transition for q > 4 in 1973. 
The 1D quantum four-state Potts system, which is a 
critical quantum model, had been an important subject in 
many-body physics for a long time. 

Numerical renormalization group methods obtained a 
first remarkable success with Wilson’s solution of the 
Kondo problem [5], White’s density matrix 
renormalization group algorithm [6], are solidly 
established as the dominant computational approach to 
quantum lattice systems in one spatial dimension. 

Recently the advances in classical simulations of 

quantum lattice systems in one spatial dimension are 
given [7-11], and the tensor network representation of 
quantum many body wave functions provides an efficient 
way to classically simulate quantum many body systems. 
The algrithm exploit two facts: invariance under 
translations of the system and parallelizability of local 
updates in the time-evolving block decimation algorithm, 
which are not contaminated by finite size corrections or 
boundary effects. 

In this paper, the local order parameter, the probability 
distribution for degenerate states of the four-state Potts 
model and the scalling of entanglement entropy in the 
four-state Potts model are investigated. 

II. THE TIME-EVOLVING BLOCK DECIMATION ALGORITHM 
The time-evolving block decimation algorithm is 

employed to simulate time evolution for a quantum 
system. The computational cost of a simulation using 
tensor network algorithms is roughly proportional to the 
size of the lattice. However, when the system is invariant 
under translations, this cost can be made independent of 
the system’s size [7-11]. The initial input state  in the 
matrix formation, each bond index of the wave function is 
related to the Schmidt decomposition: 

 

where λ is the diagonal matrix, which  contains the 
decreasingly ordered Schmidt coefficients, α labels the 
Schmidt vectors, which form orthonormal sets 

. By using absorb the unitary 
gate and singular value decomposition, the wave function 
is updated, the approximation ground state is obtained 
with the imaginary time evolution at last[7-11]. 
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III. THE FOUR-STATE POTTS MODEL AND THE PROBABILITY 
DISTRIBUTION OF THE DEGENERATE STATES 

The Hamiltonian for the 1D quantum Potts model [12, 
13] is described as:   

 

where h is the transverse magnetic field,  the Potts 
matrix  meet the relationship:  

 . The 
Potts spin matrixs are given as 

  

 

The exact values for the scaling and critical exponents 
[3,14] of the four-state Potts model are α=2/3; β=1/12; 
γ=7/6; δ=15; ν=2/3. The critical point is h=1, and the 
central charge from comform field theory is c=1.    

Like the 1D quantum Ising chains, the four-state 
quantum Potts model has two phases: a disordered phase 
for sufficiently large values of h>1 and an ordered phase 
for small h<1.                                  

The 1D quantum four-state Potts model have four 
degenerated ground state, that is to say the q=4 for this 
model. By employing the time-evolving block decimation 
algorithm, which automatically produces degenerate 
ground states, the approximation ground states are 
obtained, where the initial state is given randomly. The 
total number of the approximation ground states is 6000 
with the transverse magnetic field h=0.4, which is given 
in the spontaneous symmetry breaking section, where the 
four-degenerated state is appeared in equal probability. 
The truncation dimension is χ=4. We labeled one of the 
degenerated state when the data of N degenerated states 
are presented, N=80, 120, 160, respectively. The number 
for picking up some of the ground state is 100000 times. 
This confirms that the probability of getting the ground 
state is 1/4. The probability mass function is obtained 

finally, which is shown in Fig. 1. We expect that this is 
true for any model with degenerated four-state. 

 
Fig.1. The probability mass function for one-dimensional quantum  four-
state Potts model. The total number of the ground state for the model is 
6000 with the transverse magnetic field h=0.4, the data are presented N 
ground states, and one of the degenerated state is label. The number for 
pick up some of the ground state is 100000.  The maximal probability 

for N=80, 120, 160 is 20, 30, 40, respectively. The probability for any of 
the degenerated four- state is equal, which is 1/4. 

IV. SIMULATION RESULTS 
The local order parameter is one of the most important 

physical observable. The time-evolving block decimation 
algorithm makes it possible to extract a local order 
parameter. The single-site reduced density matrix is 
obtained from the approximation ground-state. When the 
transverse magnetic field h runs from the h>hc to h<hc,   hc 
=1, the parameter <M>= <Qx,1+ Qx,2 + Qx,3 >/3 as the 
local order parameter is obtained. The local order 
parameter <M> is nonzero with the transverse magnetic 
field h in the spontaneous symmetry breaking section, 
which is zero in the symmetry phase. The figure is shown 
in Fig. 2, with matrix dimension χ= 8, 16, 32, 64, 
respectively. The critical point given by χ= 64 is h=1.001. 
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Fig.2. The local order parameter for one-dimensional quantum  four-

state Potts model. The local order paramete <M>, which is the function 
of the transverse magnetic field h, is shown with matrix dimension χ= 8, 

16, 32, 64, respectively. The critical point given by the trunction 
dimension is getting closer and closer to the exact critical point h=1. The 

spontaneous symmetry breaking is occurred with the transverse 
magnetic field h<1. 

The von Neumann entropy is a measure of a bipartite 
entanglement present in a quantum state, which is also 
used to detect the quantum phase transition point. We may 
try to find the exact amount of entanglement which is 
captured. The entanglement entropy can be measured by 
the entanglement entropy as 

S=-Trλ2logλ2, 

where λ is a diagonal matrix. Time-evolving block 
decimation algorithm is automatically produce the 
diagonal matrix λ and tensor Γ in the matrix product 
states at last.  The peak of the entanglement entropy 
increases with the matrix dimension increases. It diverges 
logarithmically at a quantum transition point with matrix 
dimension χ→∞. We have found that the quantitative 
entanglement entropy support of time-evolving block 
decimation algorithm at criticality obeys the following 
scaling law [14-17] 

S=alog(χ)+b 

where a and b are parameters to be determined, S is 
the maximal entanglement entropy for the trunction 
dimension. The relationship is shown in Fig. 3, the matrix 
dimension χ=4, 6, 8, 12, 16, 32, respectively. The 
parameters are obtained with a=0.1606, b=0.4630.  

 

 
Fig.3. The scalling relationship of the entanglement 

entropy S with log(χ) for the one-dimensional quantum  
four-state Potts model. The scalling low is S=alog(χ)+b, 
the parameters a and b to be determined. The maximal 

entropies for matrix dimensions χ=4, 6, 8, 12, 16, 32 are 
shown. The parameters are obtained with a=0.1606 and 

b=0.4630. 

V. CONCLUSIONS 
All our numerical results were found using the time-

evolving block decimation algorithm. The probability 
mass function, local order parameter and the scalling of 
entanglement entropy with the matrix dimension are 
obtained. We confirmed the degenerated four-state of the 
1D quantum Potts model in a transverse magnetic field 
with numerical simulation. The critical point obtained by 
local order parameter <M>= <Qx,1+ Qx,2 + Qx,3 >/3 is 
agree with the exact critical point h=1. The scaling of 
entanglement entropy with the matrix dimension χ can be 
used to analyze properties of critical models with 
relatively small effort. We expect finite-χ scaling to 
appear for some generalizations of matrix product states. 
The quantum phase transitions for q-state Potts model is 
an interesting issue which calls for future investigations.     
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