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Abstract 

Feature weighing methods are commonly used to find the relative significance among a set of features that are 
effectively used by the retrieval methods to search image sequences efficiently from large databases. As evidenced 
in the current literature, dynamic textures (image sequences with regular motion patterns) can be effectively 
modelled by a set of spatial and temporal motion distribution features like motion co-occurrence matrix. The aim of 
this paper is to develop effective feature weighting and retrieval methods for a set of dynamic textures while 
characterized by motion co-occurrence matrices. 
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1. Introduction 

Dynamic textures are image sequences on natural 
scenarios possessing regular motion patterns. The 
motion assembly by a flock of flying birds, water 
streams, fluttering leaves, and waving flags are some of 
the most common examples of dynamic textures. 
Multimedia objects e.g., image sequences, are presented 
in terms of their features for the purpose of indexing and 
retrieval. A good feature has the property that it is 
similar among the same class of objects and dissimilar 
among different classes of objects. Feature weighing 
methods are commonly used to find the relative 
significance among a set of features. 

Retrieval methods, on the other hand are used to 
search image sequences efficiently from large databases 

by using appropriate feature set. The growing popularity 
of the Internet, the introduction of new consumer 
products for digital image and video creation, and the 
emergence of digital standards for television 
broadcasting have resulted in a greater demand for 
efficient retrieval of multimedia data. Feature weighting 
and retrieval methods while applied on first order 
features deserve some special consideration. 

Motion Co-occurrence Matrix (MCM), a commonly 
used fist order feature for analysing dynamic 
textures3,7,11, is computed from some motion related 
measures along a clique from time-space domain 
(Section 2.1). The conventional feature weighting 
approach considers the features altogether and computes 
feature weights using a heuristic search as otherwise an 
exhaustive search is highly time consuming under such 
a scenario for large feature sets. Considering domain 
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information, however, MCMs can be organized into a 
hierarchy and weights can be computed at each level in 
the hierarchy. Such an approach facilitates using an 
exhaustive search at levels with a smaller number of 
features, and thus improving the overall classification 
accuracy. We thus propose in this paper a hierarchical 
approach for feature weighting that provides a 
mechanism to control motion measure specific MCM, 
clique and domain weights at different levels. Note that 
the conventional feature weighting approach is unable 
to control MCM weights domain wise and leaves room 
for some classification accuracy improvement as 
observed in the result section (Table 1). 

Fast retrieval of image sequences from large 
databases is commonly performed using hierarchical 
retrieval methods. To perform hierarchical retrieval it is 
necessary to group the image sequences beforehand, 
based on some similarity measures. This phase is known 
as clustering. The goal is to group similar videos into a 
hierarchy of clusters and compute the cluster centres so 
that during retrieval, the query image sequence can be 
compared with the cluster centres instead of all the 
image sequences in the database. The cluster centre is 
commonly computed using the average of feature 
vectors of a set of videos in the cluster. Such averaging 
of MCMs however represents a mixed dynamic texture 
and commonly used distance measures between single 
and mixed textures suffer from the volumetric problem1 
where the MCM of the mix can represent none of the 
component textures. So, MCM averaging is not suitable 
to represent a cluster for retrieving dynamic textures 
based on their MCM. We thus propose a new cluster 
centre computation procedure and develop a Multi 
Feature Centre Retrieval (MFCR) method. As 
evidenced from experimental results, our proposed 
MFCR method provides better retrieval performances 
over the conventional hierarchical retrieval methods. 

This paper is organized as follows. Some 
background and related works are briefed in Section 3. 
Some contemporary and our proposed feature weighting 
approaches are elaborated in Section 4. Our proposed 
retrieval method is elaborated in Section 5 along with 
some other retrieval methods applicable on MCM. 
Comparative study on experimental results of feature 
weighting and retrieval methods is presented in Section 
6. Finally Section 7 concludes the paper. 

2. Background and Related Works 

MCM is the most commonly used first order motion 
distribution statistics in all the dynamic texture 
characterization techniques and for the sake of clarity of 
future discussion we first define MCM in this Section. 
There exist a number of motion based dynamic texture 
characterization techniques1–11. MCM as a first order 

feature is used in an explicit manner in Optimal Time 
Space Ratio technique3,11. The functionality of OTSR is 
thus also elaborated in this Section. 

2.1. Motion Co-occurrence Matrix 

Let a sequence of motion frames be represented by a 
function ),( yxMt  such that ),( yx  points to the spatial 
location at t -th motion frame. A MCM Γ  is a 
tabulation of how often different pair of motion 
measures ),( vu  occur over the frame sequence such that 
u  is associated with a pixel ),( yxM t  and its neighbour 

),( yxt yxM t ηηη +++  is associated with v , where 

}1,0,1{, −∈yx ηη  and }0,1{−∈tη . The neighbours (Fig 

1) are called temporal neighbours for 1−=tη  and 
spatial neighbours for 0=tη . Let the term “clique” 
represent a unique neighbour direction identified by a 
triple ),,( tyx ηηη . The co-occurrence matrix 

corresponding to clique ),,( tyx ηηη  is denoted by 

),,( tyx ηηηΓ . 

2.2. OTSR Technique 

A dynamic texture has one temporal dimension and two 
spatial dimensions and in OTSR three instances of 
MCM namely temporal co-occurrence matrix )1,0,0( −Γ  

and spatial co-occurrence matrices )0,0,1(Γ  and )0,1,0(Γ  
is computed. Use of first order motion features like 
MCM in OTSR facilitates the use of block motion 
leading to real time dynamic texture recognition. 
Distance between dynamic textures is computed along 
each of these three cliques using KL- divergence and 
are fused into a single distance measure using a 
weighted Euclidian summation at an optimal weight. 
Assignment of explicit weights to time and space 
domains facilitates the use of any feature weighting 
technique to obtain the best classification results at 
optimal weight and hence the technique is named 
Optimal Time-Space Ratio (OTSR) technique. As first 
order features are directly used in OTSR, it provides a 
good platform for the application of our proposed 
feature weighting and retrieval methods and the 
reported experimental results in this paper are applied 
on an extended OTSR model as detailed next. 

3. Feature Set of Extended OTSR Technique 

Only a minimal set of three MCMs are considered in 
OTSR. In order to obtain more generalized feature 
weighting and retrieval methods, we need to extend the 
basic feature set of OTSR technique by incorporating 
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more MCMs. Consequently, some modifications to the 
parameter notations of the basic OTSR technique are 
made below. 

Assuming that each image processing element in the 
motion frame sequence M  is associated with a motion 
vector ),( yx vv=v

r , let )(v
r

ζ  be a vector-to-scalar 
mapping function. In the extended OTSR technique, the 
following two vector-to-scalar mapping functions are 
considered 

 22)( yxm vv +=v
r

ζ  and )/arctan()( xyd vv=v
r

ζ (1) 

whereas in the basic OTSR technique we used only 
)(v
r

mζ . Both magnitude and direction of motion 
vectors are quantized into motion measures using a 
linear quantization method. In order to distinguish 
MCMs corresponding to magnitude and direction, we 
denote the MCM corresponding to clique η  by ζ

ηΓ  

where },{ dm ζζζ ∈ . 
We also consider higher number of cliques in the 

extended OTSR technique. MCMs are computed for 
temporal cliques tχ ={ )1,0,0( − , )1,1,1( −− , )1,1,0( − , 

)1,1,1( − , )1,0,1( − } and spatial cliques  sχ ={ )0,1,1(− , 
)0,1,0( , )0,1,1( , )0,0,1( } (Fig 1). Thus in the extended 

OTSR technique, each dynamic texture is identified by 
a total of 1025 =×  temporal and 824 =×  spatial 
MCMs. Note that the remaining cliques are ignored as 
their respective MCMs are identical to the MCMs of the 
cliques considered. 

4. Feature Weighting Methods 

The two most common groups of feature weighting 
methods are the filter and wrapper methods. Filter 
methods16,27,29 determine the relevance of features to 
describe the data using statistical techniques and do not 
use feedback from subsequent learning or classification 
algorithms. Conversely, wrapper methods14,17,26 use 
feedback that incorporate a Maximum Likelihood (ML) 
approach where weight assignment is optimized using 
classification accuracy as a performance measure. It is 
in this context that in this paper we focus on wrapper 
methods for feature weighting. 
Finding optimal weights of a large set of features using 
an exhaustive search is a highly time consuming 
process. Heuristic search algorithms are common in the 
literature for feature weighting under such 
circumstances, and Genetic Algorithm (GA) is the most 
commonly used method because it performs a 
randomized search for optimal feature weights and it is 
not susceptible to becoming stuck in local minima. We 
thus explore the GA for feature weighting in this paper. 

The conventional Flat Feature Weighting (FFW) 
approach considers the entire feature set for computing 
weights without factoring in domain information and 
thus is able to use only heuristic search methods like 
GA. We thus develop a Hierarchical Feature Weighting 
(HFW) approach, which provides a mechanism to 
control MCM, clique, and domain weights at different 
levels. We have used both exhaustive search and GA 
based randomized search for feature weighting at 
different levels in the hierarchy. We first elaborate GA 
feature weighting method in this section followed by the 
proposed HFW approach. 

4.1. Feature Weighting Using Genetic Algorithm 

GA14 performs the optimal weight search using two 
operators – crossover and mutation. The crossover 
operator has the effect of merging solutions whilst 
preserving the already successful feature weights. The 
mutation operator makes sure that GA does not get 
stuck to local minima. GA encodes feature weights in a 
string of binary digits. Each binary digit is known as a 
gene and the string of genes is known as a chromosome. 
A group of b  consecutive genes in a chromosome is 
decoded to calculate the feature weight. For a total of n  
features the chromosome length is nb .   

In order to find the optimal feature weights, GA 
starts with a large set (population) of randomly 
generated chromosomes. The fitness of each 
chromosome in the current population is evaluated from 
the classification accuracy of a dataset with feature 
weights decoded from corresponding chromosome. A 
global variable stores the feature weights corresponding 
to the chromosome with maximum fitness. A set of 
chromosomes, whose fitness is better than the remaining 
chromosomes in the current population, are used to fill 
in a mating pool for subsequent crossover and mutation 
operations. The crossover operator randomly selects two 
parent chromosomes from the mating pool and 
interchanges a portion of the gene stream between them 
to generate new child chromosomes (Fig 2). A mutation 
operator is then applied on the new chromosomes where 
every gene (bit) in a chromosome is altered with a 
certain probability. These newly generated 
chromosomes constitute the GA population for the next 
generation. During the evolution of GA, the 
classification accuracy of the underlying data set is used 
as a performance measure of the weight sets. GA stops 
when there is no improvement of average fitness of the 
population for a consecutive number of generations. 

4.2. Hierarchical Feature Weighting (HFW) 

Weight of a feature computed by any feature weighting 
approach is applied to the corresponding feature 
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distance between two textures. We thus elaborate the 
distance measure first followed by the hierarchical 
feature weighting approach. 

The primary dissimilarity between two textures i  
and j  is computed in terms of motion magnitude MCM 
and motion direction MCM along each clique η  using 
KL divergence (a commonly used distance metric for 
dynamic textures3,7,12). Let the distance along clique η  
for magnitude MCM and direction MCM be denoted by 

),( jiD mζ
η  and ),( jiD dζ

η  respectively. These distances 
are fused into a single distance measure for each clique 
η  as 

 ),(),(),( jiDjiDjiDistClq dm dm ζ
ηη

ζ
ηηη αα += , (2) 

where  dm 1,0 ≤≤ ηη αα  are the weights of the magnitude 
and direction measures respectively for clique η  and 

 dm 1=+ ηη αα . 
The optimized clique distances are then fused into 

two domain distance measures, one for each of the two 
domains as 

 ∑
∈∀

=
t

jiDistClqjiDistDom OPT
t

χη
ηηλ ),(),(  (3) 

and 

 ∑
∈∀

=
s

jiDistClqjiDistDom OPT
s

χη
ηηλ ),(),(  (4) 

where 10 ≤≤ ηλ  is the weight of clique η  such that 

1=∑
∈∀ tχη

ηλ  and 1=∑
∈∀ sχη

ηλ . 

Finally, the optimized domain distances are fused 
into a single distance measure as 

),(),(),( jiDistDomjiDistDomji OPT
ss

OPT
tt ωω +=∇ (5) 

where 1,,0 ≤≤ st ωω  are the weights of temporal and 
spatial domains respectively and 1=+ ts ωω . It is 
clearly evident from the above hierarchical distance 
measure that explicit clique and domain weights are 
maintained at different levels to provide a mechanism to 
control corresponding weights. 

In order to compute feature weights, three levels of 
weighting are involved, using hierarchical distance 
measure. We use the wrapper method to optimize the 
distance measure at each level, i.e., the weight ratio is 
searched for which the dataset is classified with the 
highest accuracy. At the first stage, m

ηα  and d
ηα  are 

optimized for each clique η  where distance between 
two textures is computed using (2). We use an 
exhaustive search up to two decimal points at this stage 
to find the optimal weights between magnitude and 
direction MCMs corresponding to each clique. 
Although two weights are involved, due to the 

 dm 1=+ ηη αα  constraint, the degree of freedom of this 
optimization process is reduced to 112 =− , hence 
justifying the exhaustive search. At the second stage, 
ηλ ’s are optimized for each domain using the distance 

measures in (3) and (4). As the degree of freedom of the 
optimization process at temporal and spatial domains 
are 41=−tχ  and 31=−sχ  respectively, an 
exhaustive search is no longer feasible, hence we opt to 
use the randomized heuristic GA search technique. 
Finally domain weights tω  and sω  are optimized 
where the distance between two textures is computed 
using (5). At this level again we use an exhaustive 
search up to two decimal points, as the degree of 
freedom is 1. 

The HFW approach has the following benefits over 
the FFW approach: (i) As the search space is divided 
into smaller groups in HFW, we are able to use the 
exhaustive weight search at top and bottom level that 
FFW fails to use because of huge search space. 
Exhaustive search is better than randomized search and 
as a result HFW achieves better classification accuracy 
than FFW approach; (ii) for the same reason HFW is 
faster than FFW. If weighting needs to be adjusted 
adaptively, HFW is clearly a better alternative to FFW; 
and (iii) HFW provides a mechanism to control weights 
among cliques as well as domains that FFW fails to 
provide. HFW clearly portrays relative significance 
among a set of cliques within a domain to make the 
selection process of a minimal set of features easy. 

5. Retrieval Methods 

Time efficient retrieval of visual documents from large 
databases has become an important research area in 
recent times because of the proliferation of video and 
image data in digital form. The most commonly used 
video retrieval scheme in contemporary visual 
document retrieval systems18,19,22,24,28 is Query By 
Example13 (QBE), where given a query video, similar 
examples are retrieved by comparing the low level 
features of the query video with the corresponding pre-
computed features of the videos in the database. Such 
exhaustive search for similar videos in the database is 
highly time consuming and thus restricts the use of QBE 
for many practical applications. One approach to solve 
this problem is to create an indexing scheme by 
grouping similar videos beforehand into similar clusters 
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so that at the time of the query, only the relevant set of 
clusters are examined. These time efficient retrieval 
methods are commonly known as hierarchical retrieval 
methods. In this section we elaborate two existing such 
retrieval methods, HREC (Hierarchical Retrieval using 
Exhaustive Centre7) and HRRC (Hierarchical Retrieval 
using Representative Centre15). 

As mentioned in Section 1, to perform hierarchical 
retrieval similar videos are grouped into a hierarchy of 
clusters beforehand and the cluster centres are computed 
so that during retrieval, the query video is guided to the 
proper cluster by comparing its features with those of 
the cluster centres. The basic hierarchical clustering 
algorithm used in all retrieval methods is presented in 
Fig 3. Hierarchical clustering starts by placing all the 
videos in the database into distinct clusters. These 
clusters are iteratively merged into new clusters based 
on some similarity measure DClust  and placed higher 
in the hierarchy (Fig 4). The merging process ends when 
only the root cluster is left. 

During the retrieval tree building process, the cluster 
centre is computed for each newly formed cluster. A 
cluster centre is a hypothetical video that in general is 
represented by a feature vector computed over the 
feature vectors of the videos in that cluster. During 
retrieval, similarity between the feature vector of the 
query video and that of a cluster centre is computed 
using some similarity measure DQuery . The search 
process starts at the root cluster by comparing the query 
video with its two children. Based on similarity, the 
appropriate cluster is chosen from these two for 
searching in the next level. The process continues until 
the search reaches a leaf video node. 

HREC, HRRC and our proposed MFCR method 
differs in defining DClust , cluster centre and DQuery , 
as detailed next. 

5.1. The HREC Method 

During the retrieval tree building process, the distance 
DClust  between two clusters kC  and lC , is defined in 
terms of the distances of the videos as 

 ),(max),(
),(

jiCCDClust
lk EEji

lk ∇=
×∈

 (6) 

where ),( ji∇  is the distance between videos i  and j . 
The cluster centre for cluster kC  is represented by a 
hypothetical video whose feature vector is obtained by 
averaging the feature vectors of all the videos in kE . 
During retrieval, the distance between a query video i  
and a cluster kC  is computed as 

 ),(),( kk ciCiDQuery ∇=  (7) 

where kc  is the hypothetical video representing cluster 

kC . 

5.2. The HRRC Method 

During the retrieval tree building process, the distance 
DClust  between two clusters kC  and lC , is defined in 
terms of the distances of the videos as 

 ),(),(
),(

jiavgCCDClust
lk EEji

lk ∇=
×∈

 (8) 

where ),( ji∇  is the distance between videos i  and j . 
The cluster centre for cluster kC  is represented by a 
hypothetical video whose feature vector is obtained by 
averaging the feature vectors of a set of the kR  
representative videos in kE  that are selected as 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇−≤∇∀=
∈≠∈∈≠ ∀∀∀

∈ ),(min),( jiavgthRjlavglR
kEijkEikElj

kElk

. (9) 

During retrieval, the distance between a query video i  
and a cluster kC  is computed using (7). 

5.3. The MFCR Method 

The feature vector computation process for cluster 
centre in existing HREC and HRRC methods is not 
suitable when each feature in the vector is a MCM. 
Average of a set of MCMs actually represents a mixed 
texture1, and distance computation between single and 
mixed textures in terms of MCM suffers volumetric 
problem. Thus during retrieval the distance between the 
feature vector of a query video and that of the cluster 
centre is faulty when MCM is used as feature. We thus 
propose a new approach in the MFCR method to 
compute the cluster centre.  

In the proposed MFCR method the distance 
DClust  between two clusters kC  and lC  is computed 
using (8). The cluster centre kc  for cluster kC  is 
associated with a set of kR  representative videos 
instead of a hypothetical mixed video. The kR  
representative videos for cluster kC  are selected using 
(9). During retrieval, the distance between a query video 
i  and a cluster kC  is computed as 

 ),(min),( jiCiDQuery
kRj

k ∇=
∈∀

. (10) 

As distance is computed between feature vectors of 
single videos in (10), the volumetric problem is resolved 
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in the proposed MFCR method. A cluster centre kc  is 
associated with a set of kR  feature vectors and hence 
we use the name Multi Feature Centre Retrieval 
method. For the sake of simplicity we have used the 
same number of representatives for all the clusters. Thus 
considering R  representative videos, a cluster kC  
containing kN  videos has ),min( kNR  videos 
associated with the cluster centre kc . 

With an increased number of representative videos, 
the probability of a query video  belonging to the class 
of any representative video will be high, leading to 
higher retrieval accuracy, although at the cost of higher 
search time (as more distances need to be computed). 
Thus our proposed MFCR provides a user-controlled 
threshold (number of cluster representatives R ) to 
control between retrieval accuracy and search time. In 
terms of storage overhead, MFCR is better than HREC 
and HRRC. In MFCR, when clusters are created we 
need to store only references to the representative 
videos in the database for cluster centre as we use their 
features directly whereas in both HREC and HRRC 
methods additional storage is required for the feature 
vector for the cluster centre that are generated by 
averaging multiple feature vectors. 

6. Experimental Results 

We conducted a set of feature weighting and retrieval 
experiments using the features of Extended OTSR 
technique. We used the dynamic texture dataset 
consisting of 124 video clips of Szummer image 
sequences20,25. Motion vectors were computed using 
block motion computation method21 with block size 

1616×  and search window of length 7±=d  pixels. 
Magnitude of motion vectors were quantized into 21 
motion measures such that motion measure i  covered 
the range  

( ) ( )274,5.0min45.0,0max ×+<×≤− ilength vectori  

where 27  is the maximum possible vector length with 
7±  maximum displacement and 40,,1,0 K=i . Motion 

directions were quantized into 26 motion measures such 
that motion measure i  covered the range 

( ) ( )π24,5.0min5.0,0max ×+<×≤− iangle vector4i  
where π2  is the maximum possible vector angle and 

25,,1,0 K=i . 
For feature weighting experiments using both the 

FFW and HFW approach, we used the half of the 
dataset for learning feature weights and the full dataset 
for evaluation. In order to conduct the classification we 
used 1–NN classification method. For the FFW 
approach we used GA as the underlying feature 
weighting method. For the GA weighting method we 

considered 10,000 chromosomes in the GA population. 
The crossover operation is performed by dividing a 
chromosome into two equal halves and interchanging 
gene streams between two right corresponding halves of 
two different chromosomes. For mutation, a gene is 
altered if the corresponding random number generated 
using uniform distribution is less than 0.1. We used the 
same GA setup for the second level weighting in the 
HFW approach. 

For retrieval experiments, the retrieval tree was built 
up using all the videos in the dataset. For retrieval 
purpose all the videos in the database were supplied as a 
query. We used a 1–NN classifier to evaluate the results 
of the retrieval methods. The feature vector of each 
video consists of 18 MCMs. To calculate the distance 
between videos we used hierarchical distance measure 
∇  defined in (5) where the MCMs were weighted using 
the weights computed by the HFW approach. 

6.1. Feature Weighting Experiments 

Feature weights obtained by FFW and HFW are 
presented in Fig 5 and Fig 6 respectively. The 
performances of the feature weighting approaches are 
presented in Table 1. It can be observed from Table 1 
that with feature weighting, classification accuracy 
improves by 9.1% and 10% for FFW and HFW 
approaches compared to that when no weighting in 
used. It is also observed that the HFW approach 
achieves better classification accuracy than the FFW 
approach. This can be attributed to the fact that two 
exhaustive search steps are used in HFW whereas FFW 
uses a randomized search. Note that the accuracy 
improvement is only 0.83%. This is because an 
exhaustive search is used to find weights between only 
two features at bottom level and two domains at top 
level compared to a significant number of cliques that 
are weighted at Step 2 in HFW that makes the influence 
more biased towards GA. However the influence of GA 
in FFW is more than that in the HFW approach. 

It is evidenced from Fig 5 and Fig 6 that the HFW 
approach provides a clear picture of MCM, clique and 
domain weights at different levels that FFW fails to 
provide. It can be observed from bottom level (Step 1) 
weights of HFW that on an average magnitude MCMs 
are getting more weights than direction MCMs and thus 
direction MCMs can be ignored for practical 
applications. In OTSR, clique triplet 

)}1,0,0(),0,1,0(),0,0,1{( −  was selected over 
)}1,0,0(),0,1,1(),0,1,1{( −− . It can also be observed from 

the middle level (Step 2) of HWF that the former clique 
triplet is better than the later. Finally the time–space 
weight ratio obtained at the top level (Step 3) of HFW 
portrays the importance of spatial domain over temporal 
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that also agrees with the fact that an image sequence has 
two spatial and one temporal dimension. 

6.2. Retrieval Experiments 

In Fig 7 we report the retrieval accuracy results obtained 
using our proposed MFCR method for different number 
of cluster representatives using 1–NN classifiers. An 
important observation can be summarized from Fig 7. 
With an increased number of cluster representatives, 
classification accuracy gets better in general. This is 
because, with an increased number of representative 
videos, the probability of a query video belonging to the 
class of any representative video will be high, leading to 
a higher retrieval accuracy. 

Although the accuracy of MFCR increases with an 
increase in the number of representatives per cluster, 
this is not without cost. Fig 8 shows the average 
retrieval time computed over different dynamic texture 
classes. It can be observed that retrieval time increases 
with the increased number of representatives per cluster. 
This is because with a higher number of representatives 
more distances need to be computed, thus increasing 
retrieval time. Thus the number of cluster 
representatives can act as a good threshold to control 
between accuracy and retrieval time. An increased 
number of cluster representatives provide better 
classification accuracy at the cost of retrieval time. 

In Table 2 a comparison of the proposed MFCR 
method with the HREC and the HRRC methods is 
provided. For MFCR we have used ⎡ ⎤ 7124log2 =  
representatives per centre where 124 is the total number 
of videos in the database. It can be observed that the 
MFCR method outperforms the other two methods. The 
reason for this better accuracy level can be explained 

form from the fact that HREC and HRRC perform 
feature vector averaging, which is not suitable for 
features like MCM because of the volumetric problem. 
Thus query videos are misled to wrong clusters, 
resulting in poor retrieval accuracy. Our proposed 
MFCR method eliminates the volumetric problem and 
results in better retrieval accuracy. 

7. Conclusions 

In this paper we have developed effective feature 
weighting and retrieval methods to apply on MCMs. We 
have proposed a hierarchical approach for weighting a 
set of motion co-occurrence features to exploit the 
inherent domain influence by dividing the search space 
in such a way that the degree of freedom at the top and 
bottom level is low enough to use an exhaustive search. 
Consequently, better classification results have been 
achieved using this approach compared to the 
conventional flat feature weighting approach. We have 
modified the conventional hierarchical retrieval process 
so that the motion co-occurrence features can be used. 
More precisely, we have replaced the feature 
computation process of cluster centres at each level by 
associating a set of feature vectors instead of a single 
average feature vector, as such average features neither 
represent the cluster nor are suitable for computing 
similarity between motion distribution features. As 
evidenced from the experimental results, our proposed 
method provides better retrieval results over the 
conventional hierarchical retrieval methods. 
 

 
 

 

 
Fig 1: Spatiotemporal neighbourhood of point )0,0(tM . The temporal and spatial neighbouring 
points are in frames 1−tM  and tM . 
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Fig 2: Crossover of binary chromosomes. 

 
 

 

 
Fig 3: Cluster computation using hierarchical clustering algorithm. 
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Fig 4: An example hierarchical clustering on eight videos. Each cluster is expressed by the set of videos 
in that cluster. 

 
 

 

 
Fig 5: Feature weights obtained using the FFW approach using the GA feature weighting method. 
Along each clique, the weight of magnitude and direction MCMs are marked in red and blue 
respectively. 
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Fig 6: Feature weights obtained using the HFW approach –– Step1: Along each clique weight of 
magnitude and direction MCMs are marked in red and blue respectively; Step2: Spatial and temporal 
clique weights are marked in green and blue respectively, and Step3: Spatial and temporal domain 
weight marked in green and blue respectively. 

 
 

Table 1: Performance of different feature weighting approaches in terms of classification accuracy. 
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Fig 7: Retrieval accuracy of proposed MFCR method at a different number of cluster representatives. 
Results are reported using 1–NN classifier. 

 
 

 

 
 

Fig 8: Average retrieval time of proposed MFCR method at a different number of cluster representatives. 
 
 
 
 
 
 
 
 
 
 

Table 2: Retrieval accuracy(%) of MFCR, HRRC, and HREC retrieval methods. Results are reported 
for each method using 1–NN classifier. 
Retrieval method Retrieval accuracy (%) 

MFCR 93.65 

HRRC 85.85 

HREC 75.66 
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