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Abstract—In this paper, decoupled form of CFD methods 
considering important design parameters is applied to model 
and predict the surface flow on fluids. Application of Coanda-
effect on-going trends of particle removal methods for 
determination and prediction of cleaning performance in a 
camera lens is a new research area due to its significant role in 
design, evaluation and optimization. Numerical analysis of 
cleaning performance in term of particle drag force coefficient 
of nozzle and energy efficiency is carried out for surface radii, 
cover lengths and angle of attack. Furthermore, an 
optimization method for achieving optimal particle cleaning is 
presented. The optimization problem is formulated based on 
independent variables including lens surface radius r, camera 
cover length l1 and l2, and angle of attack θ with the objectives 
to maximize pressure flow and drag force coefficient while 
minimizing the dynamic turbulence flow. To establish this 
condition, a novel design of particle removal is introduced and 
simulation study is carried out in FLUENT to investigate the 
growth and the structure of surface disturbances on a flat and 
curved surface by a coaxial airflow in accordance with the 
pressure distribution and shear stress. And the genetic 
algorithm in I-SIGHT is used to obtain optimized particle 
removal for camera cover design. A method to apply the 
optimization results for optimum particle drag forces ability is 
discussed. 

Keywords-Coanda-effect, Particle removal, Optimization, 
Particle drag force. 
 

I INTRODUCTION  
The result of fluid behaviours in interaction with 

surfaces, other fluids or, indeed, with itself considered to be 
common interest of most fluid phenomena. While the 
standard approach to fluid dynamics can be said is effective 
in providing a means of calculating a wide range of fluid 
behaviour and seen as interaction with each other or with 
any given surface. These general classes of phenomena, 
which may be observed in both gaseous and liquid jets, are 
known as the Coanda-effect. An analytical and numerical 
solution that approximates a two and three-dimensional 
Coanda flow is proposed. Since between the tangential 
components of the momentum equation, with the validity of 
the results is being limited to approximate values. In order 
to determine its advantages and limitation, both external 
and internal flows of the FLUENT code are analysed which 
emphasising on the Coanda-effect. In the design of any 
complex system, it customary to find that the 

decomposition of such a system divides the analysis of the 
problem into several smaller sections that focus on 
designated application such as particle removal apparatus 
[1].    

II BERNOULLI AND COANDA FLOW 
In order to obtain the particle velocities in the cell 

approximately equal in magnitude, the velocity should be 
kept small enough. The cause of the Coanda-effect, in some 
circumstances could refer to a flow that stirred up a 
pressure differential. Strictly speaking, because particles 
will move lateral to the flow after striking protuberances on 
the surface, Bernoulli’s equation does not apply over a real 
free surface. According to Statistical Mechanics, the root 
mean square of the or particle speed, υrms is not related to 
the pressure, P but only to the temperature, T and the 
particle mass, m.   
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Where kB is Boltzmann’s constant, and thus no matter 
what p0 is, ( ഥ࢜࢞ )0 cannot exceed the particle speed, υrms, 
corresponding to the temperature T. It is very important to 
have a proper detailed design of this region, in order to 
achieve the best mixing and delivery of the flow as define, 
which ensure the pressure is applied. The phenomenon in 
which an air flow attaches to an adjacent wall which curves 
away from this flow, usually referred as the Coanda-effect. 
It is due to the decrease in the particle density ρ, in the 
boundary layer. Particles enter and leave just above the 
surface of the airfoil, in a given constant volume, V. An 
equation for pressure in an airfoil can be formed by letting 
η(s) to be the particle density at s on the top of the airfoil. 
Hence the particle density in Coanda flow is described as η. 
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III REMOVAL OF PARTICLES 

A. Mechanical Method 
In this study, the discussion proposes the concept of 

particle removal on camera lens surfaces which are an 
integral part of a visual system in various applications, 
where cameras are standard equipment on most of today’s 
activity. By understanding the present basic theory and 
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with the variations of vector and contour for velocity and 
pressure distribution are shown in Fig. 5-7 while in 
accordance with similar application, respectively. The 
relative error between the simulated values S1 and S2 

(whole channel, right and left corner) and the calculation 
domain obtained from the half-channel simulations is under 
2%. 
 

 
 
 

 

   
 

 

 
 

 
 
 
 
 
 

 
Figure 3. Design of particle removal system using Coanda-effect, Basic configuration (left), first prototype (middle), second prototype (right) 
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Figure 4. The geometrical model and the reference lengths of the Coanda-effect particle removal second prototype model with re-circulating zones character 

TABLE I. COMPUTATIONAL SETTINGS FOR THE PARTICLE REMOVAL MODEL 

 

Inlet Fluid Motive Fluid 
Inlet velocity 35 m/s Inlet velocity 15 m/s 
Inlet hydraulic 
diameter 0.082 m Inlet hydraulic diameter 0.0045 m 

Fluid type Air (O2) 
Cont’ 
flow Turbulence kinetic energy 4.5937 m2/s2

Turbulence intensity 5 % Turbulent dissipation rate 0.6603 m2/s3

Absolute criteria 0.0001  Outlet Fluid   

Viscous model Standard k-epsilon (2 
eqn.) Outlet hydraulic diameter 0.01 m 

 Backflow turbulent kinetic 
energy 

0.0038 m2/s2

   Backflow turbulent dissipation 
rate 

4.8521 m2/s3

Motive Fluid 

Inlet Gas / Liquid 
Outlet 

…… .. .. 

Lens Surface 
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Figure 5. Coanda-effect particle removal prototype in 3-dimensional distribution meshing model 

  
 

Figure 6. Flow regime on vector solution in full 3-dimensional channel model for k = 2 and Re = 3600;  

(a) Vector of velocity, (b) Vector of pressure with asymmetric orthogonal mesh 

   

   
 

Figure 7. Flow regime on (top) contour of velocity and (bottom) contour of pressure solution in full 2 and 3-dimensional channel model for k = 2 and Re = 
3600 with asymmetric orthogonal mesh 

 

 

Generally, the camera lens cleaner parameters 
considered in the numerical simulation are based on the 
existing design parameters of a surface particle removal in 
our laboratory as other designs found in the literature. 
Similarly, the parameters considered are based on the 
characteristics of the selected condition and available 

related information in the literature. The results of 
numerical simulation of cleaning performance in terms of 
particle drag forces are presented in Table. 2, hence the 
simulation results explain that the residual for the prototype 
model shows linearity in most parameters, given in Fig. 8. 

 
 

(a) (b) 
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TABLE II. Results of numerical analysis of particle drag force coefficient 

 

 
 
 
 

Figure 8. Scaled residual plot of the prototype model with various geometric parameters 

V OPTIMIZATION PROBLEM FORMULATION 
 

Basic Concept and Application of Optimization to 
Particle Removal Performance. An optimization problem is 
one requiring the determination of the optimal (max. or 
min.) value of a given function, called the objective or 
fitness function, subject to certain defined restrictions, or 
constraints placed on the variables concerned [11]. 
Optimization could also be viewed as the process of 
making a decision or choosing the best out of available 
resources to achieve the most desired results. In 
optimization problems, we are interested in minimizing 
undesirable effects and/or maximizing desirable effects. 
Any of both of these will form the objective of optimization 
from which the objective function is formulated. An 
optimization problem could be single objective or multi-
objective optimization. A general multi-objective 
minimization problem can be defined as follows: 

 
 

ܖܑܕ
࢔ࢄא࢞ ሺ࢞ሻ࢏ࢌ ൌ ሼࢌ૚ሺ࢞ሻ, ,૛ሺ࢞ሻࢌ … ,  ሺ࢞ሻሽࡹࢌ

 

ሺ࢞ሻࢍ ൒ ૙, ሺ࢞ሻࢎ  ൌ ૙ 
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Where x is the vector of decision variables bounded by 

the decision space, ࢄ௡ೣ and f is the set of objectives to be 
minimized. The functions g and h are sets of inequality and 
equality constarints that define the feasible region of the 
݊௫ -dimensional continuous or discrete feasible solution 
space, respectively. Interface parameters for modeling and 
predicting pressure force and cleaning performance of 
coanda-effect particle removal apparatus in various 
condition described in Fig. 9. 
 
 

 
Figure 9. Design of experiments for camera lens cover apparatus 
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In a similar way to the optimization method discussed 
above, Fig. 10 shows the Pareto front or set of non-
dominated solutions for geometrical model and particle 
drag force coefficient, and the numerical values are 

presented in Table 3. The major difference between the first 
simulation and this second one is the range of indirect flow, 
according to the relevant decoupled model applied. 
 

 
 

 

Figure 10. Optimization result for geometrical parameter (left) and pressure flow (right)  

 
 

TABLE III. NUMERICAL ANALYSIS RESULTS OF PARTICLE DRAG FORCE 
COEFFICIENT 

Solution 
No. 

Radius, r 
(cm) 

Length, l 
(cm) 

Pressure, P 
(n) 

 

1 
 

2.19 
 

5.5 
 

28940 
2 2.19 5.5 28981 
3 2.1875 5.5005 29157 
4 2.1875 7 109440 
5 2.186 5.981 42657 
    
    

25 
 

2.54075 
 

6.7344 
 

97176 
 

 

VI DISCUSSION AND CONCLUDING REMARKS 
This paper presents a numerical analysis and 

optimization of particle drag force analysis based on fluid 
flow and interface parameters in modeling. The following 
conclusion are made from the study:  
 

• Application of Coanda-effect to the study of 
particle removal is generally a new area of research. 
This paper proposes a method for the application of 
innovative design on particle removal which has 
considered more adjustments on fluid flow 
variables with optimization for achieving optimized 
design, cleaning performances and particles drag 
forces coefficient. 

• The validity of the results is limited to the cases 
given, since the described model differs in 
tangential component and momentum. Nonetheless, 
the regimes where the fluid assumption is not valid 
are usually some of the most baffling behaviors of 
fluid flow took place instead. 

 

• The characteristic of Coanda flow with various 
parameters in different surfaces, involving smooth 
curved surfaces and a polygonal curved surface 
have been investigated. Using the Gambit and 
FLUENT Post-processor code, the distribution of 
pressure and the considered surfaces were analyzed 
particularly with the adaptation for Coanda-effect 
on particle removal application and optimization 
process done using i-SIGHT. 

• Camera lens cover parameters, such as lens surface 
radius, camera cover length, and angle of attack are 
important design parameters having significant 
impact on cleaning performances of lens surfaces in 
various condition. 
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