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Abstract 
 

In this paper  a generalized class of finite population variance is suggested  and its large sample bias 
and mean square error are derived. Further some special cases of this class are considered  along with  
a numerical example to  compute  and compare  their biases and mean square errors. 
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1. Introduction 
 
In finite population sampling it is an usual practice for the researchers to look for some auxiliary 
variables correlated with the  main character under study to improve upon the efficiency of estimators  
formulated without the use of auxiliary variables. Ratio and regression methods  of estimation are two 
classical methods which make use of auxiliary information to derive improved estimators of the 
population mean or total of the main variable under study (Cochran,1953)1. Although the estimation of 
finite population variance arises while estimating the variance of the estimates of finite population 
mean or total , it was only through the work of Evans(1951)2 and Liu(1974)3 separate attention was 
given to the estimation of finite population variance. Liu (1974) considered the problem of estimating 
variance in a general set up and presented a general class of quadratic functions and obtained a class of 
unbiased estimators under some conditions. Isaki (1983)4 proposed the ratio method of estimation to 
estimate the finite population variance. Some early work on the estimation of finite population 
variance are due to Das and Tripathy (1978)5 and Srivastava and Jhajj (1980)6 among others. Swain 
and Mishra (1992)7 suggested some unbiased estimators of finite population variance using auxiliary 
information. Further, Swain and Mishra  (1994a )8  studied the limiting distribution of ratio estimator 
of finite population  variance under some general conditions. Also, Swain and Mishra (1994b)9  
suggested an alternative method of  estimation of finite population variance under unequal probability 
sampling.                     
 

Let  there be a finite population  1 2( , ,....., )NU U U U    consisting of  N   identifiable  units.  

To each unit iU  in the population a  paired value  ( , ), 1, 2,...,i iy x i N ,corresponding to the study 

variable   y  and the auxiliary variable x  is attached. Denote  Y  and  X  as the population means of   
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y  and   x  respectively;   2
yS  and 2

xS  as the finite population variances of   y  and  x  respectively;, 

where 
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   as the correlation coefficient between y  and x ,which is assumed to be positive. Further , X   is 

assumed to be known in advance.  For a simple random sample without replacement of size n ,define 
the sample means y  and  x  of y  and x  respectively as 
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The sample variances  of   y  and  x   are defined by 2 2
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  respectively. To first order of approximation, 
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   A ratio estimator of the population variance 2
yS  due to Isaki ( 1983 )is given by             

                                  
2
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 To first order of approximations, 

                                                                                               
 

 
2 4

2 2
ˆ( ) ( 2 )yr y y xMSE S S h      

 
2 2

2
ˆ( ) ( )yr y xBias S S h    

Under Bivariate Normality of   ( , )y x    with means ( , )Y X ,variances 2 2( , )y xS S  and correlation 

coefficient  , 
 

  2 4 24ˆ( ) (1 )yr yVar S S
n

   

  2 2 22ˆ( ) (1 )yr yBias S S
n
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 In the following we propose  a generalized class of estimator of finite population variance 2
yS  

and  derive its bias and mean square error and discuss its some special cases. 
 
 2 .       Generalized Class of Estimators of Finite Population Variance 
                              
    Consider a generalized class of estimators of finite population variance 
                                          

 
   

                                              
2 2
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,                                            (2.1) 

 where , ,g h  and    are real and free parameters to be chosen suitably. 
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Thus we write 
 

2 2
1(1 )y ys S e  , 2 2

2(1 )x xs S e    with   1 2( ) ( ) 0E e E e  , 1 2( ) ( 1)yV e    , 2 2( ) ( 1)xV e    , 

1 2( , ) ( 1)Cov e e h   
 

2ˆ
yrS   belongs to the class specified by  2ˆ

yrgS . An optimum ratio type estimator in this class is obtained 

by fixing any three of the parameters and minimizing the mean square of 2ˆ
yrgS  with respect to 

unspecified one.  
                                                                                  

 Assuming 2e <1 for all samples ,we may expand    2ˆ
yrgS     in Binomial series and keeping  second 

degree terms in the  expansion we have   
                                                               

2 2 2 2 2
1 2 2 2

( 1) ( 1) ( 1) ( 1)ˆ (1 ) 1 ( ( )) ( ) ( ( ))
2 2 2 2yrg y

h h g g h h
S S e h g h e e h g h e

     
                 

  
 Thus to first order of approximations 
                                      

 2 2
1 2

ˆ 1 ( ( ))yrg yS S e h g h e                                                     (2.2) 

 The mean square error of    2ˆ
yrgS  to (1 / )O n  is given by                                                                 

                                                        
2 4 2 2

2 2
ˆ( ) ( 1) ( ( )) ( 1) 2 ( ( ))( 1)yrg y y xMSE S S h g h h g h h                                          (2.3) 

                             

 Minimizing 2ˆ( )yrgMSE S   with respect to     gives 
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                                              (2.4)    
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 Substituting the optimum value of   in  expression for 2ˆ( )yrgMSE S  we have 
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  ,                                                  (2.5)                          

Substituting the optimum value of     in the approximate expression of bias  to (1/ )O n ,we have  

                                          

 2 2
2

( 1) ( 1) ( 1)ˆ( ) ( ) ( 1) ( ) ( 1)
2 2 2yrg opt y opt opt x

h h g g h h
Bias S S h g h h     

             
   

    2

2

( 1)
( ) ( 1)

2 opt xh g h
   

                               (2.6)     

The following  Table 1  gives  the values of the  optimum     along with  the optimum  approximate 
biases  of the  generalized    ratio type estimators of  finite population variance   for different choices 
of  ,g h  and  .  

Table 1   Optimum biases of some selected ratio type estimators                                                                      
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  Ratio type estimators Optimum biases excepting the 
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Under Bivariate Normality  ,                                                                                                                                   
 

2 4 42ˆ( ) (1 )yri yMSE S S
n

  ,i=1,2,….6                                                                                                              
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2 2 2 4
1 1

1ˆ( ) (1 2 )yyrB Bias S S
n

      

 

2 2 2 2
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2 2 2
5 5
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n
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6 6

ˆ( ) 0yrB Bias S   

 
 

3. Some Alternative Modified Ratio type Estimators of  Finite population Variance 
 

Tailor and Sharma (2012) considered some alternative modified ratio type estimators of finite 

population variance  based on  weighted combination of 2
ys  and  

2
2

2
x

y
x

S
s

s
 where weights are some 

arbitrary functions of sampling fraction. We consider only the simplest one given by  
 

2
2 2 2

2
ˆ (1 ) x
rts y y

x

S
S fs f s

s
                                                (3.1) 

To first order approximation , 
                        

             2ˆ( )rtsBias S = 2
2(1 )( )y xS f h                                            (3.2) 

 

             2 4 2
2 2

ˆ( ) ( 1) (1 ) ( 1) 2(1 )( 1)rts y y xMSE S S f f h            
                (3.3) 

Alternatively , we may form  general weighted combination of 2
ys   and 

2
2

2
x

y
x

S
s

s
 , given by  

 

                                    
2
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ˆ (1 ) x
rw y y
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s
                                        (3.4) 

The optimum weight is obtained by minimizing the approximate mean square error of 
2ˆ
rwS  

with respect  to w .Thus, the optimum weight is given by  
                                     

                                    2
2

1
1 1

1opt x
x
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w k h




     


                (3.5) 

 

   Hence, the optimum mean square error of      2ˆ
rwS   is given by  

                                   

2 2 2
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and the optimum bias is given by  
                                        

                                            2 2
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                    (3.7) 

Another alternative adjusted ratio type variance estimator  is proposed as  
 

                    
2 2
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( ) 2 2

ˆ (1 )x x
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s s
    ,            (3.8) 

where     is a real constant to be suitably chosen.                            

Expanding   2
( )

ˆ
r adjS    in binomial series , and keeping terms up to second degree terms, we 

have 
 

                          2
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2 2( ) 2

ˆ( ) ( 1) ( 1) ( 1)y y x xr adj
y

E S S S h
S

  
         
  

      (3.9) 

                      2
( )

ˆ( )r adjMSE S = 4 2
2 22 2

( 1) (1 ) ( 1) 2(1 )( 1)y y x
y y

S h
S S

   
         
  

    (3.10) 

 

Minimizing     2
( )

ˆ( )r adjMSE S  with respect to      we have 
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         (3.12) 

 

and                    2
( )

ˆ( ) 0optr adjBias S                                                             (3.13)                           

 

Note: 2ˆ
rwS , 2

( )
ˆ
r adjS  and 2ˆ ( 1,2,...,6)yrgiS i    are more efficient than 2ˆ

yrS and 2ˆ
rtsS  . However, 

2
( )

ˆ
r adjS  and 2

6
ˆ
yrgS  are to be preferred over others  because their  first order biases are zero. 

Further, 2ˆ
rtsS  is less biased than 2ˆ

yrS ; 2ˆ
rwS  and 2

2
ˆ
yrgS  have the same first order bias. 

 
4.  Numerical illustration  

The data taken from Murthy(1967)10 used by Tailor and Sharma(2012)11 relate to output(y) 
and number of workers(x) of  80 factories.  
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The summary computations are 
                                                         

2 280, 30, 0.375, 2.2667, 3.65 , 2.3377y xN n f h          

Table 2 : Comparison of Absolute  Biases  and  Efficiencies of Estimators 

 
 

Conclusions: Numerical illustration shows that 2ˆ
yrS and 2ˆ

rtsS   are less efficient than 

2ˆ
rwS , 2

( )
ˆ
r adjS and 2ˆ ( 1,2,...6)yrgiS i  .Further, the first order biases of 2

( )
ˆ
r adjS  and 2

6
ˆ
yrgS are zero, 

followed by 2
4

ˆ
yrgS .The biases of 2ˆ

rwS  and 2
2

ˆ
yrgS  are equal. 
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Estimator  2/ yBias S  4/ yMSE S  Efficiency 

1         2
ys  0 1.2667 100 

2         2ˆ
yrS   1.3123 1.2413 102.05 

3         2ˆ
rtsS  0.8202 0.6298 201.13 

4          2ˆ
rwS  0.6624 0.5914 214.19 

5          2
( )

ˆ
r adjS  0 0.5914 214.19 

3         2
1

ˆ
yrgS  1.3186 0.5914 214.19 

4         2
2

ˆ
yrgS  0.6624 0.5914 214.19 

5         2
3

ˆ
yrgS  0.6753 0.5914 214.19 

6       2
4

ˆ
yrgS  0.6561 0.5914 214.19 

7       2
5

ˆ
yrgS  1.3377 0.5914 214.19 

8       2
6

ˆ
yrgS  0 0.5914 214.19 
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