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In this work, we study the beta exponentiated Lindley distribution which includes as special cases several
models such as the Lindley, exponentiated Lindley and beta Lindley distributions. Some structural properties
of the proposed distribution are studied including expressions for the moments. The estimation of parameters
using the methods of moments and maximum likelihood is also discussed. The flexibility of this distribution is
illustrated in an application to a real data set.
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1. Introduction

In recent years, generalized distributions have been widely studied in statistics as they possess flexi-
bility in applications. This is justified because the traditional distributions often do not provide good
fit in relation to the real data set studied. For example, [1] proposed the beta-Pareto distribution and
discussed its various properties. [2] introduced and studied the gamma-Pareto distribution. [3] pro-
posed the Weibull-Pareto distribution. [5] studied the beta-Dagum distribution. [12] presented the
beta-Weibull distribution. [15] defined a five-parameter beta Burr XII distribution and discussed its
various properties. [16] introduced the Kumaraswamy generalized gamma distribution. [17] studied
the gamma-exponentiated Weibull distribution and [18] studied the beta modified Weibull distribu-
tion.
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The Lindley distribution [11] is important for studying stress-strength reliability modeling. The
cumulative distribution function (CDF) of the Lindley distribution is given by:

W (x) = 1− θ +1+θx
θ +1

e−θx (1.1)

where x > 0 and θ > 0 is a scale parameter. Some authors have proposed new distributions based
on modifications of the Lindley model. [20] obtained the two-parameter Lindley distribution and
discussed its various properties and applications. [19] obtained the negative binomial-Lindley distri-
bution by combining the negative binomial and Lindley distributions. The three-parameter Lindley
distribution was introduced by [6], who used the distribution for modeling survival data. An impor-
tant extension/generalization of the Lindley distribution is the exponentiated Lindley distribution
introduced by [14] with CDF:

G(x) = W α (x) =
(

1− θ +1+θx
θ +1

e−θx
)α

(1.2)

where α > 0 is a shape parameter. The corresponding probability density function (PDF) is:

g(x) =
αθ 2e−θx

θ +1
(1+ x)

(
1− θ +1+θx

θ +1
e−θx

)α−1

(1.3)

In this article, we propose a new distribution that extend the exponentiated Lindley distribu-
tion. Some of the main structural properties of this distribution are derived. The flexibility of this
distribution is illustrated in an application to a real data set.

The article is organized as follows. In Section 2 is defined the beta exponentiated Lindley dis-
tribution and some special sub-models are discussed. The failure rate function, moments, moment
generating function and characteristic function are derived in Section 3. Characterizations of the new
model are presented in Section 4. The estimation of the parameters using the methods of moments
and maximum likelihood is discussed in Section 5. Finally, in Section 6 an application on a real
data set is reported.

2. The model

Let G(x) be the CDF of any random variable X . The CDF of a generalized class of distributions
defined by [7] is given by

F (x) =
1

B(a,b)

∫ G(x)

0
ta−1 (1− t)b−1 dt (2.1)

where a > 0, b > 0 and B(·, ·) is the beta function defined by

B(a,b) =
∫ 1

0
ta−1 (1− t)b−1 dt (2.2)

. The corresponding PDF for (2.1) is given by

f (x) =
1

B(a,b)
g(x) [G(x)]a−1 [1−G(x)]b−1 (2.3)

Replacing (1.2) in (2.1), we obtain a new distribution, called beta exponentiated Lindley (BEL),
with CDF given by
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F (x) =
1

B(a,b)

∫ (1− θ+1+θx
θ+1 e−θx)

α

0
ta−1 (1− t)b−1 dt (2.4)

The PDF corresponding for F(x) is

f (x) =
αθ 2(1+ x)e−θx

(θ +1)B(a,b)

[
1−

(
1−θ +1+θx

θ +1
e−θx

)α]b−1(
1− θ +1+θx

θ +1
e−θx

)αa−1

(2.5)

Figure 1 shows the different graphs of PDF of BEL distribution for various values of the parameters
a, b, α and θ .

Fig. 1. The PDF of the BEL distribution for different values of the parameters.

2.1. Submodels

The following distributions are special of the BEL distribution:

(1) When α = 1, the BEL distribution is the beta Lindley (BL) distribution (see [13]), with the
density given by:

f (x) =
θ 2(1+ x) e−θbx

(θ +1)B(a,b)

(
θ +1+θx

θ +1

)b−1(
1− θ +1+θx

θ +1
e−θx

)a−1

; (2.6)

(2) If b = 1, we have the exponentiated Lindley (EL) with parameters θ > 0 and αa > 0. The
PDF is

f (x) =
αaθ 2(1+ x) e−θx

(θ +1)

(
1− θ +1+θx

θ +1
e−θx

)αa−1

; (2.7)

(3) If a = b = 1, we have the EL with the PDF,

f (x) =
αθ 2 e−θx

θ +1
(1+ x)

(
1− θ +1+θx

θ +1
e−θx

)α−1

(2.8)

Published by Atlantis Press 
Copyright: the authors 

62



J. A. Rodrigues, A. P. C. M. Silva and G.G. Hamedani

(4) If α = b = 1, we have another EL distribution with parameters θ > 0 and a > 0. The PDF
is

f (x) =
aθ 2 e−θx

θ +1
(1+ x)

(
1− θ +1+θx

θ +1
e−θx

)a−1

; (2.9)

(5) If a = b = α = 1, we have the Lindley distribution with the PDF,

f (x) =
θ 2

θ +1
(1+ x) e−θx. (2.10)

3. Properties of the model

In the Section, we discuss some of the main properties of the BEL distribution.

3.1. Expansions for the cumulative and density functions

Theorem 3.1. The CDF of BEL distribution, for α(a+ j) and b real non-integers, is given by

F (x) =
α

B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]xle−θkx

Γ(b− j)Γ [α(a+ j)+1− k] (k− l)! j!l!
(3.1)

where Γ(·) is the gamma function defined by

Γ(α) =

∞∫
0

tα−1 e−tdt (3.2)

If b is an integer, the index j stops at b−1. If α(a+ j) is an integer, the index k stops at α(a+ j).

Proof. The CDF for the BL distribution is given by

F (x) =
1

B(a,b)

∫ (1− θ+1+θx
θ+1 e−θx)

α

0
ta−1 (1− t)b−1 dt

=
1

B(a,b)

∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

∫ (1− θ+1+θx
θ+1 e−θx)

α

0
ta+ j−1dt

=
1

B(a,b)

∞

∑
j=0

(−1) jΓ(b)
(a+ j)Γ(b− j) j!

(
1− θ +1+θx

θ +1
e−θx

)α(a+ j)

=
α

B(a,b)

∞

∑
j=0

(−1) jΓ(b)
Γ(b− j) j!

{
∞

∑
k=0

(−1)kΓ [α(a+ j)]
Γ [α(a+ j)+1− k]k!

(
θ +1+θx

θ +1
e−θx

)k
}

=
α

B(a,b)

∞

∑
j,k=0

(−1) j+kΓ(b)Γ [α(a+ j)]
Γ(b− j)Γ [α(a+ j)+1− k] j!k!

(
θ +1+θx

θ +1

)k

e−θkx

=
α

B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]xle−θkx

Γ(b− j)Γ [α(a+ j)+1− k] (k− l)! j!l!
(3.3)
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Theorem 3.2. The PDF of BEL distribution, for b and α(a+ j) real non-integers, is given by

f (x) =
αθ 2(1+ x)

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]xle−θ(k+1)x

Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!
(3.4)

If b is an integer, the index j stops at b−1. If α(a+ j) is an integer, the index k stops at α(a+ j)−1.

Proof. The PDF for the BEL distribution is given by

f (x) =
αθ 2(1+ x)e−θx

(θ +1)B(a,b)

[
1−

(
1−θ +1+θx

θ +1
e−θx

)α]b−1(
1− θ +1+θx

θ +1
e−θx

)αa−1

(3.5)

For a > 0 real non-integer and | z |< 1, we have the power series

(1− z)a−1 =
∞

∑
j=0

(−1) jΓ(a)z j

Γ(a− j) j!
(3.6)

Using the series representation (3.6) in Equation (3.5), we can write

f (x) =
αθ 2(1+ x)

(θ +1)B(a,b)

∞

∑
j,k=0

(−1) j+kΓ(b)Γ [α(a+ j)]e−θ(k+1)x

Γ(b− j)Γ [α(a+ j)− k] j!k!

(
θ +1+θx

θ +1

)k

=
αθ 2(1+ x)

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]xle−θ(k+1)x

Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!
(3.7)

3.2. Hazard rate function

For a continuous distribution with PDF f (x) and CDF F(x), the hazard rate function is defined as

h(x) = lim
∆x→0

P(X < x+∆x|X > x)
∆x

=
f (x)

1−F(x)
(3.8)

The hazard rate function is an important quantity characterizing life phenomena. For the BEL
distribution, the hazard rate function is introduced by the following theorem:

Theorem 3.3. The hazard rate function for the BEL distribution is given by

h(x) =
αθ 2(1+ x)e−θx

[
1−

(
1−θ +1+θx

θ +1
e−θx

)α]b−1(
1− θ +1+θx

θ +1
e−θx

)αa−1

(θ +1)

[
B(a,b)−α

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]xle−θkx

Γ(b− j)Γ [α(a+ j)+1− k] (k− l)! j!l!

] (3.9)

Proof. This can be easily deduced by using (2.5), (3.1) and (3.8).

Figure 2 illustrates some of possible shapes of the hazard rate function of the BEL distribution
for selected values of the parameters a,b,α and θ .
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Fig. 2. The hazard rate function of the BEL distribution for different values of the parameters.

3.3. Moments

Many of the interesting characteristics and features of a distribution can be studied through its
moments (e.g. tendency, dispersion, skewness and kurtosis). Therefore, it is customary to derive the
moments when a new distribution is proposed.

Theorem 3.4. The nth moment of BEL distribution, for b > 0 and α(a+ j) > 0 real non-integers,
is given by

E (Xn) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(−1) j+kΓ(b)Γ [α(a+ j)] (n+ l)!
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!

(
θ

θ +1

)l

× [θ(k+1)+n+ l +1]

[θ(k+1)]n+l+2 (3.10)

If b > 0 is an integer, the index j stops at b− 1. If α(a+ j) > 0 is an integer, the index k stops at
α(a+ j)−1.

Proof. Using the form in (3.4), we can write

E (Xn) =
∫ ∞

0
xn f (x)dx

=
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(−1) j+kΓ(b)Γ [α(a+ j)]
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!

(
θ

θ +1

)l

×
∫ ∞

0
xn+l(1+ x)e−θ(k+1)xdx (3.11)

By setting t = θ(k+1)x and using the definition of the gamma function (3.2), we obtain

E (Xn) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(−1) j+kΓ(b)Γ [α(a+ j)] (n+ l)!
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!

(
θ

θ +1

)l

× [θ(k+1)+n+ l +1]

[θ(k+1)]n+l+2 (3.12)
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this completes the proof.

In particular, the mean for the BEL distribution is given by

µ = E (X) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(−1) j+kΓ(b)Γ [α(a+ j)] (l +1)
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!

(
θ

θ +1

)l

× [θ(k+1)+ l +2]

[θ(k+1)]l+3

3.4. Moments generating function and the characteristic function

Here, we derived the moment generating function and the characteristic function of BEL distribu-
tion.

Theorem 3.5. The moment generating function of BEL distribution is given by

M (t) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b) [α(a+ j)]
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!

× [θ(k+1)− t + l +1]

[θ(k+1)− t]l+1 (3.13)

where t < θ(k+1). The corresponding characteristic function is

ϕ (t) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b) [α(a+ j)]
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!

× [θ(k+1)− it + l +1]

[θ(k+1)− it]l+1 (3.14)

where i =
√
−1.

Proof. Using the form in (3.4), we can write

M (t) =
∫ ∞

0
exp(tx)g(x)dx

=
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b)Γ [α(a+ j)]
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!

×
∫ ∞

0
xl(1+ x) e−[θ(k+1)−t]xdx (3.15)

By setting z = [θ(k+1)− t]x with θ(k+1)> t and using the definition of the gamma function, we
obtain

M (t) =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(
θ

θ +1

)l (−1) j+kΓ(b) [α(a+ j)]
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!

× [θ(k+1)− t + l +1]

[θ(k+1)− t]l+1 (3.16)
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4. Characterizations of the model

Characterizations of distributions are important to many researchers in the applied fields. An inves-
tigator will be vitally interested to know if their model fits the requirements of a particular distri-
bution. To this end, one will depend on the characterizations of this distribution which provide
conditions under which the underlying distribution is indeed that particular distribution. Various
characterizations of distributions have been established in many different directions. In this section,
several characterizations of (BEL) distribution are presented. These characterizations are based on:
(i) a simple relationship between two truncated moments; (ii) the hazard function of the random
variable; (iii) a single function of the random variable.

4.1. Characterizations based on truncated moments

In this subsection we present characterizations of (BEL) distribution in terms of a simple relation-
ship between two truncated moments. Our characterization results presented here will employ an
interesting result due to Glänzel [8] (Theorem G, below). The advantage of the characterizations
given here is that, cd f F need not have a closed form and are given in terms of an integral whose
integrand depends on the solution of a first order differential equation, which can serve as a bridge
between probability and differential equation.

Theorem G. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval

for some a < b (a =−∞ , b = ∞ might as well be allowed) . Let X : Ω → H be a continuous
random variable with the distribution function F and let g and h be two real functions defined
on H such that

E [g(X) | X ≥ x] = E [h(X) | X ≥ x] η (x) , x ∈ H ,

is defined with some real function η . Assume that g , h ∈C1 (H) , η ∈C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H . Finally, assume that the
equation hη = g has no real solution in the interior of H . Then F is uniquely determined by the
functions g , h and η , particularly

F (x) =
∫ x

a
C
∣∣∣∣ η ′ (u)
η (u)h(u)−g(u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = η ′ h
η h − g and C is a constant,

chosen to make
∫

H dF = 1 .

Clearly, Theorem G can be stated in terms of two functions g and η by taking h(x)≡ 1, which
will reduce the condition given in Theorem G to E [g(X) | X ≥ x] = η (x) . However, adding an
extra function will give a lot more flexibility, as far as its application is concerned.
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Proposition 4.1. Let X : Ω → (0,∞) be a continuous random variable and let h(x) =[
1−

(
1− θ+1+θx

θ+1 e−θx
)α

]1−b
and g(x) =

(
1− θ+1+θx

θ+1 e−θx
)αa

h(x) for x ∈ (0,∞) . The pd f of X
is (2.5) if and only if the function η defined in Theorem G has the form

η (x) =
1
2

{
1+

(
1− θ +1+θx

θ +1
e−θx

)αa}
, x > 0.

Proof. Let X have density (2.5) , then

(1−F (x)) E [h(X) | X ≥ x] =
1

a B(a,b)

{
1−

(
1− θ +1+θx

θ +1
e−θx

)αa}
, x > 0 ,

and

(1−F (x)) E [g(X) | X ≥ x] =
1

2a B(a,b)

{
1−

(
1− θ +1+θx

θ +1
e−θx

)2αa
}

, x > 0 ,

and finally

η (x)h(x)−g(x) =
h(x)

2

{
1−

(
1− θ +1+θx

θ +1
e−θx

)αa}
> 0 f or x > 0 .

Conversely, if η is given as above, then

s′ (x) =
η ′ (x) h(x)

η (x) h(x)−g(x)
=

αa θ 2(1+x)
θ+1 e−θx

(
1− θ+1+θx

θ+1 e−θx
)αa−1{

1−
(
1− θ+1+θx

θ+1 e−θx
)αa

} , x > 0 ,

and hence

s(x) =− ln
{

1−
(

1− θ +1+θx
θ +1

e−θx
)αa}

, x > 0.

Now, in view of Theorem G, X has density (2.5) .

Corollary 4.1. Let X : Ω → (0,∞) be a continuous random variable and let h(x) be as in

Proposition 4.1. The pd f of X is (2.5) if and only if there exist functions g and η defined in
Theorem G satisfying the differential equation
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η ′ (x)h(x)
η (x)h(x)−g(x)

=
αa θ 2 (1+ x)e−θx

(
1− θ+1+θx

θ+1 e−θx
)αa−1

(θ +1)
{

1−
(
1− θ+1+θx

θ+1 e−θx
)αa

} , x > 0.

Remarks 4.1. (a) The general solution of the differential equation in Corollary 4.1 is

η (x) =
[

1−
(

1− θ +1+θx
θ +1

e−θx
)α]−1

×−
∫ αa θ 2(1+x)

θ+1 e−θx
(
1− θ+1+θx

θ+1 e−θx
)αa−1×[

1−
(
1− θ+1+θx

θ+1 e−θx
)α

]b−1
g(x)dx+D

 ,

for x > 0 , where D is a constant. One set of appropriate functions is given in Proposition 4.1 with

D = 1
2 .

(b) Clearly there are other triplets of functions (h,g,η) satisfying the conditions of Theorem
G. We presented one such triplet in Proposition 4.1.

4.2. Characterization based on hazard function

The hazard function of twice differentiable distribution function, F , satisfies the first order differen-
tial equation

h′F (x)
hF (x)

−hF (x) = q(x) ,

where q(x) is an appropriate integrable function. Although this differential equation has an obvi-

ous form since

h′F (x)
hF (x)

−hF (x) =
f ′ (x)
f (x)

(4.1)

for many univariate continuous distributions (4.1) seems to be the only differential equation in

terms of the hazard function. The goal of the characterization based on hazard function is to estab-
lish a differential equation in terms of hazard function, which has as simple form as possible and
is not of the trivial form (4.1) . For some general families of distributions, like (BEL) family, this
may not be possible, but possible for their sub-families. Here, we present a characterization of the
sub-model (2) (which includes sub-model (5)) of (BEL) model based on a nontrivial differential
equation in terms of the hazard function.

Proposition 4.2. Let X : Ω → (0,∞) be a continuous random variable. The pd f of X is
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(2.7) , for αc = 1, if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)+θ (θ +1+θx)−1 hF (x) = θ 2 (θ +1+θx)−1 , 0 < x < ∞ (4.2)

with initial condition hF (0) = θ 2 (θ +1) .

Proof: If X has pd f (2.7) with αc = 1, then clearly (4.2) holds. Now, if (4.2) holds, then

d
dx

{(θ +1+θx)hF (x)}= θ 2x,

from which we have

(θ +1+θx)hF (x) = θ 2x+θ 2,

or

hF (x) =
f (x)

1−F (x)
= θ 2 (1+ x)(θ +1+θx)−1 . (4.3)

Integrating both sides of (4.3) from 0 to x, we arrive at

− ln(1−F (x)) =− ln(θ +1+θx)+ ln(θ +1)−θx.

from which we obtain

F (x) = 1− (θ +1+θx)e−θx

(θ +1)
, x ≥ 0.

4.3. Characterizations based on single function of the random variable

In this subsection we employ a single function ψ of X and state characterization results in terms of
ψ (X) . The following propositions have already appeared a Technical Report ( see [10]), so we will
just state them here for the sake of completeness.

Proposition 4.3. Let X : Ω → (a,b) be a continuous random variable with cd f F . Let ψ (x)
be a differentiable function on (a,b) with limx→a ψ (x) = 1. Then for δ ̸= 1 ,

E [ψ (X) |X > x] = δψ (x) , x ∈ (a,b) ,
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if and only if

ψ (x) = (1−F (x))
1
δ −1 , x ∈ (a,b)

Proposition 4.4. Let X : Ω → (a,b) be a continuous random variable with cd f F . Let ψ1 (x)

be a differentiable function on (a,b) with limx→b ψ1 (x) = 1. Then for δ1 ̸= 1,

E [ψ1 (X) |X < x] = δ1ψ1 (x) , x ∈ (a,b)

if and only if

ψ1 (x) = (F (x))
1

δ1
−1

, x ∈ (a,b)

Remark 4.1. All of the sub-models (1)-(5) can be characterized via the above two Propositions

with appropriate functions ψ (x) or ψ1 (x) .

5. Inference

In this section, we consider estimation of the three parameters by the methods of moments and
maximum likelihood. Suppose x1, . . . ,xn is a random sample of size n from the BEL distribution
given by (2.5). Under the method of moments, equating E (X r) with the corresponding sample
moment,

Mr =
1
n

n

∑
i=1

xr
i , r = 1, 2, 3, 4. (5.1)

respectively, one obtains the system of equations

Mr =
αθ 2

(θ +1)B(a,b)

∞

∑
j,k=0

k

∑
l=0

(−1) j+kΓ(b)Γ [α(a+ j)] (r+ l)!
Γ(b− j)Γ [α(a+ j)− k] (k− l)! j!l!

(
θ

θ +1

)l

× [θ(k+1)+ r+ l +1]

[θ(k+1)]r+l+2 (5.2)

which can be solved simultaneously to give estimates for a, b, α and θ .
Now consider estimation by the method of maximum likelihood. The log-likelihood for a ran-

dom sample x1, . . . ,xn from the BEL distribution given by (2.5) is
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logL(a,b,α,θ) = n logα +2n logθ −n log(θ +1)+n [logΓ(a+b)− logΓ(a)− logΓ(b)]

− θ
n

∑
i=1

xi +
n

∑
i=1

log(1+ xi)+(αa−1)
n

∑
i=1

log
(

1− θ +1+θxi

θ +1
e−θxi

)
+ (b−1)

n

∑
i=1

log
[

1−
(

1− θ +1+θxi

θ +1
e−θxi

)α]
(5.3)

Differentiating the log-likelihood with respect a, b, α and θ , respectively, and setting the result
equal to zero, we have

∂ logL
∂a

= n [ψ(a+b)−ψ(a)]+α
n

∑
i=1

log
(

1− θ +1+θxi

θ +1
e−θxi

)
= 0 (5.4)

∂ logL
∂b

= n [ψ(a+b)−ψ(b)]+
n

∑
i=1

log
[

1−
(

1− θ +1+θxi

θ +1
e−θxi

)α]
= 0 (5.5)

∂ logL
∂α

=
n
α
−

n

∑
i=1

(b−1)
[
θ +1− (θ +1+θxi)e−θx

]α

(θ +1)α − [θ +1− (θ +1+θxi)e−θx]
α log

(
1− θ +1+θxi

θ +1
e−θxi

)
+ a

n

∑
i=1

log
(

1− θ +1+θxi

θ +1
e−θxi

)
= 0 (5.6)

∂ logL
∂θ

=
2n
θ

− n
θ +1

−
n

∑
i=1

xi +(αa−1)
n

∑
i=1

θxi [(θ +1)(1+ xi)+1]e−θxi

(θ +1) [θ +1− (θ +1+θxi)e−θxi ]

− α(b−1)
n

∑
i=1

θxi
[
θ +1− (θ +1+θxi)e−θxi

]α−1
[(θ +1)(1+ xi)+1]e−θxi

(θ +1)
{
(θ +1)α [θ +1− (θ +1+θxi)e−θxi ]

α} = 0

where ψ(x) = d logΓ(x)/dx is the digamma function.

6. Application

In this section, we use the lifetime data set given by Table 1 to compare the fit of the BEL distribution
with four distributions: beta Lindley, gamma, Lindley and Weibull.

The data set given in Table 1 represents the relief times of twenty patients receiving an analgesic.
This data set was taken from [9]. We would like to emphasize that the aim here is not to provide a
complete statistical modeling or inferences for the data set involved.
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Table 1. Relief times of twenty patients.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4 3.0 1.7 2.3 1.6 2.0

The maximum likelihood estimates and the Akaike Information Criterion (AIC) values for the
fitted distributions are reported in Table 2. The results show that the BEL distribution provides a
significantly better fit than the other four models.

Table 2. The maximum likelihood estimates and AIC of the models based on
data set.

Distribution Maximum Likelihood Estimates AIC

BEL a = 10.401, b = 0.322, α = 39.581, θ = 5.353 38.937
BL a = 9.300, b = 1.717, θ = 1.489 40.932
Gamma a = 9.670, b = 5.089 39.637
Lindley θ = 0.816 62.499
Weibull a = 2.130, b = 2.787 45.173

The fitted distributions superimposed to the histogram of the data in Figure 3 reinforce the
results found for the BEL model. Figure 4 display the probability plots and supports the results
shown in Table 2.

Fig. 3. Histogram and estimated densities.
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Fig. 4. Probability plots from the fitted BEL, BL, gamma, Lidley and Weibull distributions.

7. Conclusion

We proposed a new distribution, named the beta exponentiated Lindley distribution which extends
the Lindley distribution. Several properties of the new distribution were investigated, including
moments and the failure rate function. Characterizations of the beta exponentiated Lindley distri-
bution are presented. The estimation of parameters by the method of moments and the maximum
likelihood have been discussed. An application of the beta exponentiated Lindley distribution to real
data show that the new distribution can be used quite effectively to provide better fits than the beta
Lindley, gamma, Lindley and Weibull distributions.
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