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Abstract

In this paper, we shall firstly illustrate why we should discuss the Aumann type set-valued Lebesgue
integral of a set-valued stochastic process with respect to time t under the condition that the set-valued
stochastic process takes nonempty compact subset of d-dimensional Euclidean space. After recalling
some basic results about set-valued stochastic processes, we shall secondly prove that the Aumann type
set-valued Lebesgue integral of a set-valued stochastic process above is a set-valued stochastic process.
Finally we shall give the representation theorem, and prove an important inequality of the Aumann type
set-valued Lebesgue integrals of set-valued stochastic processes with respect to t, which are useful to
study set-valued stochastic differential inclusions with applications in finance.

Keywords: set-valued stochastic process, set-valued Lebesgue integral, Aumann type integral, represen-
tation theorem.

1. Introduction

In studying the evolution of macro-systems in eco-
nomic, social or biological sciences, the dynam-
ical systems having velocities are not determined
uniquely by the state of systems. Thus, we study
the differential inclusion instead of differential equa-
tion. A stochastic differential inclusion is defined as

dxt ∈ Ft(xt)dt +Gt(xt)dBt , x0 = ξ ,

which can be written in stochastic integral form as

xt−xs ∈ clL2

(∫ t

s
Fτ(xτ)dτ +Gτ(xτ)dBτ

)
, s, t ∈ I,

where F,G are set-valued stochastic processes,
B = (Bt)t∈I is a Brownian motion,

∫ t
s Fτ(xτ)dτ is

the Aumann type Lebesgue integral of the set-
valued stochastic process F with respect to time
τ ,

∫ t
s Gτ(xτ)dBτ is the Aumann type Ito integral of

the set-valued stochastic process G with respect to
the Brownian motion B. It appears in many prob-
lems, for instance, it can be considered in a natural
way as a theoretical description of stochastic control
problems1.

There are many related former works about
set-valued Lebesgue integral. Based on the work
of Richter2 and Kudo3, Aumann4 introduced the
Lebesgue integral of a set-valued function and dis-
cussed its properties. Kisielewicz5 introduced the
Aumann type Lebesgue integral of a set-valued
stochastic process. Kisielewicz with his colleagues1

5-9 did a lot of nice works about stochastic differ-
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ential inclusions, especially they discussed solution
problems. We naturally expect that the Aumann type
Lebesgue integral of a set-valued stochastic process
is a set-valued stochastic process, which is useful for
applications. If F takes nonempty closed set-values,
we can not prove it directly, but by taking decompos-
able closure. Li and Li10 gave the definition of the
Lebesgue integral of a set-valued stochastic process
by decomposable closure and discussed more prop-
erties of the integral. We also would like to refer to
related works such as Ref.11-14 and so on.

However, a set-valued stochastic process usually
takes compact subset of Rd space (d-dimensional
Euclidean space) in the real world. For example, in
the famous Black-Scholes formula for the price of a
European call option, the stock price st at the time t
is assumed to satisfy

dst = st(udt + vdBt)

where s0 > 0, u,v are constants, u is the drift of
stock, v is the volatility of stock and Bt is a Brown-
ian motion. However, being incomplete or vague of
information, one usually predicts the drift of stock
within some bounded interval, for example, [u1,u2],
u1 < u2, rather than an exact number or an un-
bounded interval, for the unbounded interval usually
has no actual sense. Similarly for the volatility of
stock. This becomes a set-valued stochastic differ-
ential inclusion as follows:

dst ∈ st(Utdt +VtdBt),

where Ut ,Vt are set-valued stochastic processes tak-
ing compact subsets of R as their values. Under the
condition that a set-valued stochastic process takes
nonempty compact subset of Rd , can we prove that
the Aumann type set-valued Lebesgue integral is a
set-valued stochastic process? What properties does
the integral have? These are the problems we shall
solve in this paper. Fortunately, we also find an al-
most everywhere problem in the former definition
of set-valued Aumann type Lebesgue integral, and
shall solve it.

We organize our paper as following: in Section
2, we shall introduce some necessary notations, def-
initions and results about set-valued stochastic pro-
cesses. In Section 3, we shall discuss the former def-
inition of Aumann type set-valued Lebesgue integral

and prove that the Aumann type Lebesgue integral is
a set-valued stochastic process and other properties
of the integral, especially representation theorem of
this type integral and an important inequality, which
are useful in the study of set-valued stochastic differ-
ential inclusions. Finally we shall give an example
for its application in Finance and show conclusions
and acknowledgement.

2. Set-valued Stochastic Processes

Throughout this paper, assume that (Ω,A ,µ) is a
complete atomless probability space, the σ -field fil-
tration {A t : t ∈ I} satisfies the usual conditions (i.e.
containing all null sets, non-decreasing and right
continuous). R is the set of all real numbers, N is the
set of all natural numbers, Rd is the d-dimensional
Euclidean space with usual norm ‖ · ‖, B(E) is the
Borel field of the metric space E. Let f = { f (t),A t :
t ∈ I} be a Rd-valued adapted stochastic process. It
is said that f is progressively measurable if for any
t ∈ I, the mapping (s,ω) 7→ f (s,ω) from [0, t]×Ω
to Rd is B([0, t])×At-measurable.

Each right continuous (left continuous) adapted
process is progressively measurable.

Assume that L p(Rd) denotes the set of Rd-
valued stochastic processes f = { f (t),A t : t ∈ I}
such that f satisfying (i) f is progressively measur-
able; and (ii)

||| f |||p =
[
E

(∫ T

0
‖ f (t,ω)‖pds

)]1/p
< ∞.

Let f , f ′ ∈L p(Rd), f = f ′ if and only if ||| f −
f ′|||p = 0. Then (L p(Rd), ||| · |||p) is complete.

Now we review notation and concepts of set-
valued stochastic processes.

Assume that K(Rd) is the family of all nonempty,
closed subsets of Rd , and Kc(Rd) (resp. Kk(Rd),
Kkc(Rd)) is the family of all nonempty closed con-
vex (resp. compact, compact convex) subsets of Rd .
For any x ∈ Rd , A is a nonempty subset of Rd , define
the distance of x and A as d(x,A) = infy∈A ‖x− y‖.
The Hausdorff metric on K(Rd) is defined as

dH(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}

Published by Atlantis Press 
  Copyright: the authors 
                  84



Aumann Type Lebesgue Integral

for A,B ∈ K(Rd). For B ∈ K(Rd), define ‖B‖K =
dH({0},B) = supa∈B ‖a‖.

For a set-valued random variable F(Ref. 15, 16),
define the set

Sp
F = { f ∈ Lp[Ω;Rd ] : f (ω)∈F(ω) for a.e. ω ∈Ω},

where Lp[Ω;Rd ] is the set of all Rd-valued random
variables f such that ‖ f‖p = [E(‖ f‖p)]1/p < ∞, and
constant p > 1. The expectation of F is defined as
E[F ] = {E[ f ] : f ∈ S1

F}. It is called Aumann in-
tegral introduced by Aumann4 in 1965 . A set-
valued random variable F : Ω→K(Rd) is called in-
tegrable if S1

F is non-empty. F is called integrable
bounded if

∫
Ω ‖F(ω)‖Kdµ < ∞. Let Lp[Ω;K(Rd)]

(resp. Lp[Ω;Kc(Rd)], Lp[Ω;Kkc(Rd)]) denote the
family of K(Rd)-valued (resp. Kc(Rd), Kkc(Rd)-
valued) Lp-bounded random variables F such that
‖F(·)‖K ∈ Lp[Ω;R]. For any two set-valued random
variables F1,F2 ∈ Lp[Ω;K(Rd)], define

∆p(F1,F2) =
(∫

Ω
dp

H(F1(ω),F2(ω))dµ
)1/p

,

then (Lp[Ω;K(Rd)],∆p) is a complete space. Con-
cerning more definitions and more results of set-
valued random variables, readers could refer to the
excellent paper 15 or the book 16.

Definition 1. A set-valued stochastic process F =
{F(t) : t ∈ I} is called progressively measurable,
if for any A ∈ B(Rd) and any t ∈ I, {(s,ω) ∈
[0, t]×Ω : F(s,ω) ∩ A 6= /0} ∈ B([0, t])×A t . F
is called L p-bounded, if the real stochastic process
{‖F(t)‖K,A t : t ∈ I} ∈L p(R).

Definition 2. A Rd-valued stochastic process
{ f (t),A t : t ∈ I} ∈ L p(Rd) is called an L p-
selection of F = {F(t),A t : t ∈ I} if f (t,ω) ∈
F(t,ω) for a.e. (t,ω) ∈ I×Ω.

Let Sp({F(·)}) or Sp(F) denote the family of all
L p-selections of F = {F(t),A t : t ∈ I}, i.e.

Sp(F) =
{
{ f (t) : t ∈ I} ∈L p(Rd) : f (t,ω) ∈
F(t,ω), for a.e. (t,ω) ∈ I×Ω

}
.

Let L p(K(Rd)) denote the set of all L p-
bounded progressively measurable K(Rd)-valued

stochastic processes. Similarly, we have notations
L p(Kc(Rd)), L p(Kk(Rd)) and L p(Kkc(Rd)).
Take Fi = {Fi(t) : t ∈ I} ∈L p(K(Rd)), i = 1,2, de-
fine

Np(F1,F2)=
[
E

(∫ T

0
dp

H(F1(s,ω),F2(s,ω))ds
)]1/p

.

F1 and F2 are said to be equivalent, if
Np(F1,F2) = 0, denoted by F1 = F2. We have
that (L p(K(Rd)),Np) is complete, L p(Kc(Rd)),
L p(Kk(Rd)) and L p(Kkc(Rd)) are closed sub-
sets of (L p(K(Rd)),Np). Denote |||F |||p =[
E

(∫ T
0 ‖F(s)‖p

Kds
)]1/p

.

Theorem 1. Let F ∈ L p(K(Rd)) with p > 1, then
S1(F) = Sp(F).

Proof. Sp(F) ⊆ S1(F) is obvious. Now we
prove the converse. For any f ∈ S1(F), we have
|| f (s,ω)||6‖ F(s,ω) ‖K since f (s,ω)∈ F(s,ω) for
a.e. (t,ω) ∈ I×Ω. Note that F ∈ L p(K(Rd)), so
that we have f ∈ L p(Rd), which implies S1(F) ⊆
Sp(F).

3. Aumann Type Set-valued Lebesgue Integral
and its Properties

Now we give the definition of Aumann type
Lebesgue integral of a set-valued stochastic process
with respect to time t.

Definition 3. Let a set-valued stochastic process
F = {F(t) : t ∈ I} ∈L p(K(Rd)) (1 6 p < +∞). For
any t ∈ I, ω ∈Ω, define

(A)
∫ t

0
F(s,ω)ds :=

{∫ t

0
f (s,ω)ds : f ∈ Sp(F)

}
,

where
∫ t

0 f (s,ω)ds is the Lebesgue integral.
(A)

∫ t
0 F(s,ω)ds is called the Aumann type

Lebesgue integral of the set-valued stochastic pro-
cess F with respect to time t introduced in Ref.5.
For any 0 6 u < t < T ,

(A)
∫ t

u
F(s,ω)ds := (A)

∫ t

0
I[u,t](s)F(s,ω)ds.

Remark 1. (1) In the definition 3, the set of se-
lections is Sp(F). As a matter of fact, if we only
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consider the Lebesgue integral, we can use S1(F).
But we often consider the sum of the Lebesgue inte-
gral of a set-valued stochastic process with respect to
time t and the Ito integral of a set-valued stochastic
process with respect to the Brownian motion, where
we have to use S2(F). Thus we here use Sp(F) for
more general case.

(2) There is a delicate problem in the defini-
tion above, i.e. is the Aumann type Lebesgue in-
tegral of a stochastic process well-defined for every
ω ∈Ω? As matter of fact, take an f ∈ Sp(F). Then,
for any fixed t ∈ I, by Fubini Theorem, the map-
ping f (·, ω) : [0, t]→ Rd is B([0, t])-measurable for
all ω ∈ Ω, but ONLY for a.e. ω ∈ Ω (NOT every
ω ∈Ω!),

It( f )(ω) =
∫ t

0
f (s, ω)ds < ∞.

Now the problem appears: It( f ) is defined a.e. ω ∈
Ω for each f and the set {It( f ) : f ∈ Sp(F)} is usu-
ally uncountable. We should notice that the union of
the exceptional sets may not be of measure zero. If
not, It(F) is not well-defined even for a.e. ω ∈ Ω!
Under what kind of condition, is the above It(F)
well-defined for a.e. ω ∈Ω?

To solve the problem, we assume that A is µ-
separable in this paper. In this case, we have that
Sp(F) is separable (Ref.17). Thus the Aumann
type Lebesgue integral It(F) is well-defined for a.e.
ω ∈ Ω. Without loss of generalization, we assume
that for every ω ∈ Ω, definition 3 and the following
hold.

Now we prove that the Aumann type set-valued
Lebesgue integral is a stochastic process.

Theorem 2. Assume that a set-valued stochastic
process F ∈L p(Kk(Rd)). Then the set-valued map-
ping Lt(F) : Ω→Kkc(Rd) defined by

Lt(F)(ω) = (A)
∫ t

0
F(s,ω)ds

is measurable, i.e. Lt(F) is a set-valued random
variable, and

Lt(F)(ω) = (A)
∫ t

0
coF(s,ω)ds.

Proof. When p = 1, we have

Lt(F)(ω) = (A)
∫ t

0
F(s,ω)ds

=
{∫ t

0
f (s,ω)ds : f ∈ S1(F)

}
.

From Theorem II.3.20 in Ref.6, (A)
∫ t

0 F(s,ω)ds
takes nonempty compact and convex subsets of Rd

as its values and we have

(A)
∫ t

0
F(s,ω)ds = (A)

∫ t

0
coF(s,ω)ds.

Since F : I×Ω → Kk(Rd) is progressively measur-
able, by Remark II.3.5 in Ref.6, I×Ω 3 (t,ω) →
σ(x,F(t,ω)) ∈ R is measurable for every x ∈ Rd ,
where σ(x,A) = sup{〈x,y〉 : y ∈ A} for A ⊂ Rd . By
virtue of Theorem II.3.21 in Ref.6, we have

∫ t

0
σ

(
x,F(s,ω)

)
ds = σ

(
x,(A)

∫ t

0
F(s,ω)ds

)

for every x ∈ Rd , ω ∈ Ω. So Lt(F)(ω) =
(A)

∫ t
0 F(s,ω)ds is measurable by Theorem II.3.8

in Ref.6 or Proposition I.2.5 in Ref.18. Thus
(A)

∫ t
0 F(s,ω)ds is measurable when p = 1. Since

F ∈L p(Kk(Rd)), we have S1(F) = Sp(F) by The-
orem 1. So Lt(F)(ω) = (A)

∫ t
0 F(s,ω)ds is measur-

able with respect to ω ∈Ω for any p > 1.

Remark 2. (1) The Aumann type set-valued
Lebesgue integral defined in Theorem 2 is a
set-valued stochastic process denoted by L(F) =
{Lt(F) : t ∈ I}. Please notice that we proved it under
the condition of the set-valued stochastic process F
taking nonempty COMPACT set values.

(2) We are interested in the set of all selections
of the integral stochastic process L(F). For any fixed
t ∈ I, by Fubini Theorem, It( f )(ω) =:

∫ t
0 f (s,ω)ds is

an A t-measurable function with respect to ω for any
given f ∈ Sp(F). Thus It( f )(·) =:

∫ t
0 f (s, ·)ds is a se-

lection of Lt(F). By the classical Jensen inequality,
we have It( f ) ∈ Lp[Ω,A t ,µ;Rd ]. Thus, {It( f ) : f ∈
Sp(F)} is a non-empty subset of Lp[Ω,A t ,µ;Rd ].
As a matter of fact, we have the following Theorem.

Theorem 3. Assume that a set-valued stochastic
process F ∈L p(Kk(Rd)) and continue to use above
notations. Then we have that {It( f ) : f ∈ Sp(F)} is
closed in Lp[Ω,A t ,µ;Rd ].
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Proof. Take a sequence {{ fn(t) : t ∈ I} : n ∈ N} ⊂
Sp(F) such that {φn(t) : n ∈ N}=: {∫ t

0 fn(s)ds : n ∈
N} ⊂ {It( f ) : f ∈ Sp(F)} is a Cauchy sequence in
Lp[Ω,A t ,µ;Rd ]. Since Lp[Ω,A t ,µ;Rd ] is com-
plete, there exists φ(t) ∈ Lp[Ω,A t ,µ;Rd ] such that

E[||φn(t)−φ(t)||p]
= E

[∥∥
∫ t

0
fn(s)ds−φ(t)

∥∥p
]

→ 0, (n→ ∞).

Thus, there exists a subsequence { fnk : k ∈ N} of
{ fn : n ∈ N} such that when k → ∞, we have

∫ t

0
fnk(s,ω)ds→ φ(t,ω), a.e. ω ∈Ω.

By Theorem 2, Lt(F)(ω) is a compact subset of
Rd . This, with the fact It( fnk)(ω) =

∫ t
0 fnk(s,ω)ds ∈

Lt(F)(ω), implies

φ(t,ω) ∈ Lt(F)(ω), a.e. ω ∈Ω.

Therefore, {It( f ) : f ∈ Sp(F)} is a closed subset of
Lp[Ω,A t ,µ;Rd ].

On the other hand, from Theorem 2, we know
that {It( f ) : f ∈ Sp(F)} is decomposable (Ref.15).
Therefore, S1

Lt(F)(A t) = {It( f ) : f ∈ Sp(F)} from
Theorem 3.

The following Lemma and Theorem are about
representation theorem of the Aumann type set-
valued Lebesgue integral.

Lemma 4. If the set-valued stochastic process F ∈
L p(Kk(Rd)), then there exists a sequence { f n : n ∈
N} ⊂ Sp(F) such that for any t ∈ I,

S1
Lt(F)(A t) = cl

{∫ t

0
f n(s)ds : n ∈ N},

where the closure is taken in L1.

Proof. Since we assume that A is µ-separable,
we have that L p(Rd) is separable (Ref.17). Thus
Sp(F) is also separable since it is a closed subset
of L p(Rd) (Theorem 2.4 in Ref.10). That is, there
exists a sequence { f n : n ∈ N} ⊂ Sp(F) such that
Sp(F) = cl{ f n : n ∈ N}, where the closure is taken
in L p(Rd).

For any t ∈ I, S1
Lt(F)(A t) = {∫ t

0 f (s)ds : f ∈
Sp(F)}. We only need to prove
{∫ t

0
f (s)ds : f ∈ Sp(F)

}
⊂ cl

{∫ t

0
f n(s)ds : n∈N

}
,

where the closure is taken in L1, since the opposite
inclusion is obvious.

Let g ∈ Sp(F), then there exists a subse-
quence { f ni : i > 1} of { f n : n ∈ N} such that
(E

∫ T
0 ||g(t,ω)− f ni(t,ω)||pdt)

1
p → 0(i → ∞). We

know that
∫ t

0 g(s)ds ∈ {∫ t
0 f (s)ds : f ∈ Sp(F)}, and

E||
∫ t

0
g(s,ω)ds−

∫ t

0
f ni(s,ω)ds||

6 E
∫ t

0
||g(s,ω)− f ni(s,ω)||ds

6 E
∫ T

0
||g(s,ω)− f ni(s,ω)||ds

→ 0 (i→ 0),

which means
∫ t

0 g(s)ds ∈ cl{∫ t
0 f n(s)ds : n ∈ N}.

Therefore,
{∫ t

0
f (s)ds : f ∈ Sp(F)

}
⊂ cl

{∫ t

0
f n(s)ds : n∈N

}
.

The proof is completed.

Theorem 5. (Representation Theorem) For any
set-valued stochastic process F ∈ L p(Kk(Rd)),
there exists a sequence { f i = { f i(t,ω) : t ∈ I,ω ∈
Ω} : i∈N}⊂ Sp(F) such that for a.e. (t,ω)∈ I×Ω,

F(t,ω) = cl{ f i(t,ω) : i ∈ N},
and

Lt(F)(ω) = cl
{∫ t

0
f i(s,ω)ds : i ∈ N

}
.

Proof. For F ∈L p(Kk(Rd)), by Lemma 4, there
exists a sequence {hn = {hn(t) : t ∈ I} : n ∈ N} ⊂
Sp(F) such that for any t ∈ I,

S1
Lt(F)(A t) = cl

{∫ t

0
hn(s)ds : n ∈ N

}
,

where the closure is taken in L1. By Theo-
rem 1.3.1 in Ref.16, for any ω ∈ Ω, Lt(F)(ω) =
cl{∫ t

0 hn(s,ω)ds : n ∈ N}. Due to Theorem 2.5 in
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Ref.10, there exits a sequence {φ j = {φ j(t) : t ∈ I} :
j ∈ N} ⊂ Sp(F) such that for any (t,ω) ∈ I×Ω,

F(t,ω) = cl{φ j(t,ω) : j ∈ N}.

Take the element one by one from two sequences
{hn : n ∈ N}, {φ j : j ∈ N}, and get a new sequence
{h1,φ 1,h2,φ 2, · · ·}, and denoted as

{ f i = { f i(t,ω) : t ∈ I,ω ∈Ω} : i ∈ N},

then for any (t,ω) ∈ I×Ω,

F(t,ω)⊂ cl{ f i(t,ω) : i ∈ N}.

By the definition of selection, for each n ∈ N and
a.e. (t,ω) ∈ I×Ω, hn(t,ω) ∈ F(t,ω). Thus for a.e.
(t,ω) ∈ I×Ω,

cl{ f i(t,ω) : i ∈ N} ⊂ F(t,ω).

Therefore, for a.e. (t,ω) ∈ I×Ω,

F(t,ω) = cl{ f i(t,ω) : i ∈ N}.

In addition, for each j ∈ N and a.e. (t,ω) ∈ I×Ω,
∫ t

0
φ j(s,ω)ds ∈ Lt(F)(ω),

then

cl{
∫ t

0
φ j(s,ω)ds : j ∈ N} ⊂ Lt(F)(ω).

Therefore, for a.e. (t,ω) ∈ I×Ω,

Lt(F)(ω) = cl{
∫ t

0
f i(s,ω)ds : i ∈ N}.

The proof is completed.

Now we prove an inequality of set-valued Leges-
gue integrals.

Theorem 6. Let p > 1. Then, for any F, G ∈
L p(Kk(Rd)), we have

d2
H(Lt(F)(ω), Lt(G)(ω))

6 t
∫ t

0
d2

H(F(s, ω), G(s, ω))ds. (1)

Proof. For each f ∈ Sp(F) and for any ω ∈Ω, we
have

inf
y∈Lt(G)(ω)

‖It( f )(ω)− y‖2

= inf
g∈Sp(G)

∥∥∥
∫ t

0
f (s,ω)ds−

∫ t

0
g(s,ω)ds

∥∥∥
2

6 t inf
g∈Sp(G)

∫ t

0
‖ f (s, ω)−g(s, ω)‖2ds.

By Lemma 1.3.12 in Ref.16, we have

inf
g∈Sp(G)

∫ t

0
‖ f (s, ω)−g(s, ω)‖2ds

=
∫ t

0
inf

y∈G(s,ω)
‖ f (s, ω)− y‖2ds

6
∫ t

0
d2

H(F(s, ω), G(s, ω))ds.

Noticing that

sup
x∈Lt(F)(ω)

inf
y∈Lt(G)(ω)

‖x− y‖2

= sup
f∈Sp(F)

inf
y∈Lt(G)(ω)

‖It( f )(ω)− y‖2,

we have

sup
x∈Lt(F)(ω)

inf
y∈Lt(G)(ω)

‖x− y‖2

6 t
∫ t

0
d2

H(F(s, ω), G(s, ω))ds.

By the definition of Hausdorff metric and symmetri-
cal property, we have (1).

Corollary 7. If F ∈L 2(Kk(Rd)) and F(t) is con-
tinuous in t with respect to the Hausdorff metric dH ,
then Lt(F) is continuous in t with respect to dH .
Proof. Take G = I[0,s]F , we have the conclusion

by (1) and the classical dominated convergence the-
orem.
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4. Note

Now we come back to the Black-Scholes formula for
the price of a European call option, the stock price
st at the time t is assumed to satisfy

dst = st(udt + vdBt)

where s0 > 0, u is the drift of stock, v is the volatil-
ity of stock and Bt is a Brownian motion. When we
predict the drift of stock fluctuates or takes in the in-
terval [u1, u2], u1,u2 ∈ R, then the stock price st at
the time t satisfies the following set-valued stochas-
tic differential inclusion

dst ∈ [u1st ,u2st ]dt + vstdBt , (2)

or set-valued stochastic integral form

st − s0 ∈ clLp

(
∈ (L)

∫ t

0
[u1st ,u2st ]dt +

∫ t

0
vstdBt

)
,

where the first integral is Aumann type set-valued
Lebesgue integral, the second integral is classi-
cal Itô integral. If st ∈ L p(R), then {Ft =
[u1st ,u2st ],A t , t ∈ I} ∈L p(Kk(R)). If h = {ht , t ∈
I}∈L (R) satisfying u1st(ω) 6 ht(ω) 6 u2st(ω) for
a.e. (t,ω) ∈ I ×Ω, then h ∈ Sp(F) and Sp(F) =
{h = {ht , t ∈ I} ∈ L (R) : u1st(ω) 6 ht(ω) 6
u2st(ω), for a.e.(t,ω) ∈ I × Ω}. From Theorem
2 and Theorem 3, we have S1

Lt(F) = {It(h) : h ∈
Sp(F)}. By representation theorem, there exists a
sequence of real-valued stochastic processes {hi =
{hi

t , t ∈ I}, i∈N}⊂ Sp(F) such that for a.e. (t0,ω)∈
I×Ω,

F(t0,ω) = cl{hi(t0,ω) : i > 1},
and

Lt0(F)

= cl
{∫ t0

0
hi(t,ω)dt : i > 1

}

=
[
u1

∫ t0

0
st(ω)dt,u2

∫ t0

0
st(ω)dt

]

= [u1,u2]
∫ t0

0
st(ω)dt.

Furthermore, we have the important inequality of
the integral by Theorem 6. So we can study the

solution of set-valued stochastic differential inclu-
sion (2) and its properties(Ref.5, 7). Thus, we can
know the movement trajectory of stock price, which
changes in certain range when we predict the drift
of stock fluctuates or takes in a given interval. It is
very useful for us to make decision in the process
and system risk control.
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