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Abstract. Parameter optimization of Support Vector Machine (SVM) is an important research 
problem, because it is critical for establishing an effective SVM with excellent generalization. This 
study develops a novel and efficient method to solve this problem by nesting two particle swarm 
optimization (PSO) algorithms to optimize SVM kernel parameter(s) and penalty parameter 
separately, in comparison with traditional methods that try to optimize all the parameters 
concurrently. The experimental results on gender classification of facial images validate the 
feasibility and quickness of the new method. 

Introduction 
Support Vector Machine (SVM) [1] [2] is a powerful and popular machine learning method for 

classification and regression problems. One of the important research problems in SVM is 
parameter optimization, which has significant influence on achieving outstanding generalization 
performance of SVM. And the SVM parameters to be optimized consist of the penalty parameter 
and the kernel parameter(s). Many techniques have been developed to solve the parameter 
optimization of SVM, such as: priori knowledge method [2], grid search [3], gradient descent 
methods [4], simulated annealing [5], genetic algorithm (GA) [6], artificial immune algorithm [7], 
ant colony optimization (ACO) [8], particle swarm optimization (PSO) [9], and so on. 

In this paper, a novel method is presented to solve parameters optimization based on nesting two 
particle swarm optimization algorithms (NPSO). NPSO is far more efficient than the traditional 
methods which optimize all the parameters simultaneously. In the NPSO method, the inner loop 
PSO is responsible for the optimization of the penalty factor, while the outer loop PSO deals with 
the optimization of the kernel function parameters. Thereby the computation complexity can be 
reduced by orders of magnitude compared to the traditional methods. 

Support Vector Machine for Classification 

Given a training set S = { (xi, yi) | xi∈RD, yi ∈ {−1, 1}, i = 1,…, N }, where xi is a input vector, 
yi the labels of xi. D dimension of feature vectors, and N number of training samples, 
determination of optimum hyper plane of SVM for classification is required to solve the 
constrained quadratic programming problem as follows. 
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where ξ are non-negative slack variables, C is the penalty parameter, and function ()ϕ  (if 
non-linear) maps training samples xi into a high-dimensional feature space. 
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The usually adopted kernel functions in SVM comprise at least four types: linear, polynomial, 
sigmoid and radial basis kernel function (RBF). Particularly, RBF (defined as 

2( , ) exp( || || )K x y x yγ= − − ,γ>0) has been used widely, because of its amazing generalization 
performance for non-linear problems, and its simplicity for optimization with only one parameter, 
γ. Therefore, this study applies RBF as the default kernel in the SVM without loss of generality, as 
the other kernels can also be employed in the same way. 

Particle Swarm Optimization (PSO) 
PSO is a stochastic populated search method proposed by Kennedy and Eberhart [10], which is 

motivated by social behavior such as bird flocking or fish schooling to search optimal solutions in a 
multidimensional space. Like other evolutionary algorithms, PSO evolves a population (called 
swarm) of potential solutions (called particles) iteratively to seek the optimal solution. In contrast 
with other optimization methods, PSO is easy to exploit with few parameters to tune. Each particle 
in a swarm moves during every evolving iteration based on two factors: (1) its personal previous 
best position (pbest), called the cognition part, (2) and its best global position (gbest), called the 
social part. The updating of the velocity and position of particles can be defined as follows for each 
particle i and dimension d. 

( ) ( )1
1 1 2 2v vt t t t t t t

id id id id d idw c rand pbest p c rand gbest p+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −                      (2) 
1 1t t t

id id idp p v+ += +                                                               (3) 
where t is the evolving generation; c1 and c2 denote personal and social learning factors , whose 
values are positive and generally assigned to 2; rand1 and rand2 are random variables generated 
from a uniform distribution in the range [0,1]; Termed the “inertia weight”, w is introduced to 
compromise and balance the global exploration and local exploitation; pid represents the position of 
particle i on dimension d, in a value range of [pmin, pmax]; and vid means the velocity of particle i on 
dimension d, in a value range of [-vmax, vmax]. Here pmin and pmax are set empirically, vmax set as (pmax 
- pmin) * 0.1, and the inertia weight w defined as: 

( )max
max min min
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t t tw w w w
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= ⋅ − +                                                           (4) 

Parameter Optimization Based on NPSO 
In order to decrease the expensive cost of SVM training, the sequential minimal optimization 

(SMO) [11] algorithm was proposed, which can decompose a large convex quadratic programming 
(QP) problem into a number of sub-problems. SMO adopts a minimal working set with only two 
data points, and resolves the sub-problems in a direct analytic way. Moreover, LIBSVM [12], a 
modified SMO algorithm, was presented to accelerate convergence by exploiting second order 
information. Thereby, this work employs the LIBSVM algorithm to train SVM. 

Different from the traditional methods which optimize the penalty factor and the kernel 
parameter simultaneously, NPSO optimizes the two kinds of SVM parameters separately by nesting 
two loops of PSO, where the inner loop PSO optimizes C and the outer loop PSO optimizes γ. 
Thereby, as the kernel matrix remains unchanging with one constant γ in each inner loop, it can be 
reused at all the iterations in the inner loop with a swarm of different C. Because the updating of the 
kernel matrix is the most computation expensive part of SMO, NPSO can decrease the computation 
complexity significantly by orders of magnitude dependent on the size of the C swarm. 

The algorithm of NPSO is given as follows: 
1 (Initialization) Generate a swarm of particles for γ with random positions and velocities in 

the search space. 
2 (Fitness) Measure the fitness of each γ in the current swarm.   
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Loop for each γ in the current swarm: 
2.1 (Initialization) Generate a swarm of particles for C with random positions and 

velocities in the search space. 
2.2 (Fitness) Measure the fitness of each C in the swarm with the fixed γ with the 

average testing rates of k-fold cross validation.  
2.3 Assign the top fitness of the fixed γ with each C to the fitness of the γ. 
2.4 (Termination) Go to Step 2 if termination criterion is satisfied, or go to Step 2.5 

otherwise. 
2.5 (Update) The C swarm involves in accordance with Eq. (2) and Eq. (3). Go to Step 

2.2. 
3 (Termination) Go to Step 5 if termination criterion is satisfied, or go to Step 4 otherwise. 
4 (Update) The γ swarm involves in accordance with Eq. (2) and Eq. (3). Go to Step 2. 
5 (Optimal result) Achieve the ultimate {C, γ} according to the top fitness (i.e. the average 

testing accuracy rate of a k-fold cross-validation). 

Experimental Results 
Extensive experiments for gender classification of facial images are conducted in order to 

evaluate the performance of NPSO, the proposed novel parameter optimization approach of SVM. 
A large-scale database is constructed by us with over 20,000 facial images gathered online. To 
expand the size of the training set to over 60,000, some synthetic samples are generated from the 
original images with minor geometric transforms such as translation, scaling, rotation and 
mirror-reflection. The testing set, independent of the training set, is constructed with 4404 original 
facial images. Gabor filters are exploited to extract feature with the dimension of 5856. 

The k-fold cross validation is used for choosing optimal parameters in this work, as described in 
the algorithm of NPSO. In k-fold cross validation, the training data set is randomly partitioned into 
k roughly equal-sized subsets. Among the k subsets, a single subset is preserved as the validation 
data for testing, and the remaining k-1 subsets are used as training data. Then the cross-validation 
procedure is repeated k times, with each subset used exactly once for validation. The fitness is 
defined as the average testing correct rate of the k-fold cross validation on the training data set. In 
this study, k is set as 10. At last, the chosen optimal parameters by the k-fold cross validation are 
used to train an SVM classifier on the whole training set, and then the final SVM classifier is 
evaluated on the testing set. 

In our experiments, empirically the exploring range of C is set as [2-3, 210], and the exploring 
range of γ [2-13, 2-1]. In NPSO, the size of C swarm in the inner PSO is set as 6, and the size of γ 
swarm in the outer PSO is set as 10. And for the traditional PSO, the size of swarm set as 60. The 
range of the inertia weight is often within [0.0, 1.0]. In this work, wmax = 0.9, and wmin = 0.4. 

As illustrated in Table 1, NPSO achieves the best accuracy rate compared to the grid search and 
the traditional PSO which tune the penalty parameter and the kernel function parameter(s) in SVM 
all together. NPSO is much more efficient than the traditional methods, as the computation 
complexity is dramatically reduced by orders of magnitude. Therefore it can search a more optimal 
result from much more candidate solutions in a same long time than the traditional methods. 

 

Table 1. Optimal SVM parameters and accuracy rates corresponding to different searching methods on the 
testing set 

Method C γ Accuracy (%) 
Grid Search 3.48220225 0.00170029 96.9119 

PSO 8.91840492 0.00109746 97. 2298 
NPSO 4.87523026 0.00142664 97. 2979 
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Conclusion 
This paper presents an original optimization method to tune the penalty factor and the kernel 

parameter of SVM separately by nesting two PSO algorithms (NPSO), compared to the traditional 
methods all of which optimize all the parameters simultaneously. NPSO can reduce the computing 
cost of the SVM parameter optimization by orders of magnitude by reusing the kernel matrix. The 
experimental results indicate that the NPSO method can achieve better classification performance 
than the other methods on gender classification of facial images. 
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