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Abstract. Support Vector Machine (SVM) is an influential and fashionable statistical learning 
technique for binary classification and regression. The generalization performance of SVM highly 
depends on proper tuning of the penalty parameter and kernel function parameter(s). An original 
technique is proposed to quickly search the optimal SVM parameters separately by nesting two 
differential evolution (DE) algorithms, which can avoid repetitious costly computation and then 
shrink the computation cost by orders of magnitude compared to the existing approaches which tune 
all the parameters concurrently. The experimental results on gender classification of facial images 
illustrate that the proposed technique can efficiently construct an SVM classifier with significant 
generalization capabilities. 

Introduction 
Support Vector Machine (SVM) [1, 2] is one of the best-known and significant supervised 

statistical learning methods for the solution of classification and regression problems with strong 
theoretical foundations based on the principle of structural risk minimization.  

However, improper selecting of SVM parameters usually leads to very poor generalization 
capabilities. Searching the optimal SVM parameters is decisive for achieving exceptional 
performance, which however is still a very hard problem. The parameters of SVM to be optimized 
consist of the penalty parameter and the kernel function parameter(s). The trade-off between 
empirical error minimization and hypothesis space complexity minimization is balanced by the 
penalty parameter. And the kernel function parameter(s) can be decisive to mapping input data 
points into some high-dimensional feature space, if the kernel function is non-linear. 

 In this study, a novel method is presented to optimize the penalty parameter and the kernel 
function parameter(s) individually based on nesting two differential evolution algorithms (NDE), 
unlike the traditional methods which search all the parameters simultaneously. Therefore, by 
keeping off expensive repetitious computation, NDE can decrease the computing cost by orders of 
magnitude. 

Support Vector Machine for Classification 
Training SVM requires solving the following quadratic programming (QP) optimization 

problem. 
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where αi are Lagrange multipliers, N is the size of the given training set 
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where D is the dimension of data points xi. 
The entries of Qij of the symmetric and positive semidefinite matrix Q are defined by 

( , ), i, j 1, 2,..., N,ij i j i jQ y y K x x= =                                               (3) 

where ( , ) ( ) ( )T
i j i jK x x x xφ φ=  denotes a kernel function. 

Linear kernel, radial basis function (RBF) kernel, polynomial kernel, and sigmoid kernel are the 
usually-used kernel functions. And RBF kernel can be described as  

( ) ( )( )( , ) exp TK x y x y x yγ= − − − ,γ>0.                                                 (4) 

SVM is trained using the given training set, and then the values of all Lagrange multipliers αi are 
calculated by solving the QP problem (1). As a result, a new data point x can be classified with the 
following function: 
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where the bias term is denoted by β, calculated through the SVM training. Specifically β can be a 
hidden part of the kernel function and be unneeded, when the kernel function is RBF. 

Due to the significant generalization capabilities and the simplicity with only one parameter γ, 
RBF is adopted in this study as the kernel function. 

Differential Evolution (DE) 
As one of the most powerful evolutionary algorithms first introduced by Storn and Price [3], the 

differential evolution (DE) algorithm is a very competitive population-based stochastic search 
method with desirable convergence attributes and has been successfully employed in many 
applications. DE is a simple, straightforward and efficient scheme for global optimization over 
continuous spaces with a very few number of control parameters, which particularly does well in 
dealing with non-differentiable, nonlinear and multimodal optimization problem. 

Inspired by natural evolution, DE iteratively evolves a population of trial solutions to seek the 
global optimum point in a continuous search space. The initial population contains individuals 
randomized uniformly within the search range, and is supposed to cover the whole seeking space as 
much as possible. Then by performing mutation, crossover and selection operators, the population is 
gradually evolved. New individuals are generated by using mutation and crossover; and then 
selection operator decides which of the new individuals should be retained for the next generation. 
The evolutionary operators are performed in the order: first mutation, second crossover, and finally 
selection. 
1. Mutation 

For each individual (called target vector) in the population xi
t, i= 1, 2, 3, . . ., NP (population 

size), a mutant vector is generated by adding the weighted difference between two individuals to a 
third individual 
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where r1, r2, r3 are randomly chosen from {1, 2, . . . , NP}, and the scalar number F = 0.8 in this 
work.  
2. Crossover 

The parent individual is mixed with the mutated vector to produce a trial vector uij
t+1 as below. 
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where rand(0, 1) represents a uniformly distributed random variable within the range [0, 1]; the 
crossover rate CR is a user-defined constant within the range [0, 1] and is set as 0.95 for this study; 
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and jrand is a randomly chosen integer from {1, 2, . . . , D}, as D is the dimension number of the 
vectors. 
3. Selection 

The fitness values of the trial vector and the target vector are compared, and then the winner is 
chosen for the next generation, as showed in Eq. (8).  
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Parameter Optimization Based on NDE 
A convex quadratic programming (QP) problem needs to be solved during SVM training, which 

can be decomposed into a series of sub-problems by the sequential minimal optimization (SMO) [4] 
algorithm. SMO employs just a two-sampled working set to reduce the training cost significantly. 
Further more, LIBSVM [5], a modified SMO algorithm, can lead to a fast convergence by 
exploiting second order information. In [6], we proposed a parallel implementation of LIBSVM for 
multi-core and multiprocessor systems which can reduce the training time dramatically. Thereby, 
the parallel implementation of LIBSVM is adopted to train SVM in this study. 

Traditional methods optimize the penalty factor C and the kernel parameter γ simultaneously, 
and then the kernel matrix must be updated for evaluating each solution, as the updating of the 
kernel matrix is the most computation expensive part of SMO. NDE optimizes the parameters 
separately by nesting two DE algorithms, while the inner loop DE optimizes C and the outer loop 
DE optimizes γ. As a result, in the inner loop with a fixed γ, the kernel matrix is unchanged and can 
be reused for all the inner iterations, as each of the iterations corresponds to an individual C in a 
population. Therefore, NDE can decrease the computing cost by orders of magnitude by keeping off 
expensive repetitious computation. 

The algorithm of NDE is given as follows: 
1 Initialize a γ population with each individual uniformly distributed in the range. 
2 Calculate the fitness of each γ in the population.   
Loop for each γ: 

2.1 Initialize a C population with each individual uniformly distributed in the range. 
2.2 Calculate the fitness of each C in the population with the fixed γ (i.e. the average test 

rates of a k-fold cross validation corresponding to the {C, γ}).  
2.3 Set the fitness of the γ as the greatest fitness among the C population. 
2.4 Go to Step 2 if the best fitness is good enough. 
2.5 Using the mutation, crossover and selection operators to improve a new C population 

by. Go to Step 2.2. 
3 Go to Step 5 if the best fitness is good enough. 
4 Using the mutation, crossover and selection operators to improve a new γ population. Go to 

Step 2. 
5 Attain the optimal {C, γ} corresponding to the optimum fitness (i.e. the average test rate of a 

k-fold cross validation). 

Experimental Results 
With the purpose of assessing the effectiveness of the proposed NDE approach, a lot of 

experiments for gender classification of facial images are conducted. A training set with over 
60,000 samples is produced based on over 20,000 facial images collected from the Internet, 
including about 40,000 synthetic samples derived from the original images with slight geometric 
transforms of translation, scaling, rotation and mirror-reflection. The testing set contains 4404 
original facial images independent of the training samples. Gabor filters are used for feature 
extraction and the feature dimension is 5856. 
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The fitness values are computed using the 10-fold cross-validation technique on the training data 
set. After that, an SVM classifier is trained on the whole training set with the optimal parameters {C, 
γ} corresponding to the top fitness, and then is used to classify the testing set. 

The range of C is experientially set as [2-3, 210], and the range of γ [2-13, 2-1]. Table 1 illustrates 
that NDE is superior to the grid search and the traditional DE which search the penalty parameter 
and the kernel parameter(s) concurrently. NDE is able to explore much more solutions than the 
traditional techniques in the same amount of time by avoiding costly repetitious computation, and 
hence can obtain a more optimum solution corresponding to a higher classification rate. 

 

Conclusion 
In this study, a new method based on nesting two DE algorithms, NDE, is developed and 

successfully implemented to the parameters optimization of SVM. Different from the traditional 
methods, NDE optimizes the parameters separately and can decrease the computing cost by orders 
of magnitude by avoiding expensive repetitious computation. The experimental results indicate that 
NDE is very efficient and effective to optimize the parameters for SVM and is capable to generate 
favorable results. 
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Table 1. Optimal parameters and classification rates corresponding to different optimization 
methods 

Method C γ Accuracy (%) 
Grid Search 3.48220225 0.00170029 96.9119 

DE 7.72841890 0.00118574 97. 2525 
NDE 5.26491264 0.00137800 97. 3887 
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