
 

On Archimedean of t-norms  
Zhang Kun-Longa  Song Li-xiab  

Department of Basic Science , North China lnstitute of Science and Technology ,Beijing, 101601, 
China  

zhkl007@126.com Songlx100@sina.com  

Keywords- T-norms; Archimedean; conditional cancellation law; cancellation law; continuous. 

Abstract—In this paper, we consider the Archimedean properties of t-norms. We summarize some 
Archimedean properties and characterize some new Archimedean properties of triangular norms on 
[0,1].  

Introduction 
Triangular-norms (t-norms) and related operations (such as t-conforms, implications) play an 

important role e.g. in the fuzzy theory and its applications. Especially the continuous Archimedean 
t-norms and the continuous t-norms are popular. The latest can be built up with the help of 
continuous Archimedeans t-norms and the strongest t-norm, the minimum operator. Hence, 
examining continuous Archimedean t-norms has major importance in the field. 

It is well-known from the literature that continuous Archimedean t-norms can be represented by 
additive generator functions [2]. 

Triangular norms on [0,1]  were introduced in [6] and play an important role in fuzzy set theory 
(see e.g. [1,7,8] for more details). One of the most important properties that can be satisfied by t-
norms on the unit interval is the Archimedean property: continuous t-norms can be fully 
characterized by means of Archimedean t-norms, the Archimedean property is closely related to 
additive and multiplicative generators, etc. [1,9,10]. In this paper,we summarize some Archimedean 
properties and characterize some new Archimedean properties.[11]. 

Preliminaries  
Definition 1. A triangular norm (t-norm for short)is a binary operation T on the unit interval 

[0,1],i.e.a function 
2[0 1] [0 1]T : , → , ,such that for all [0 1]x y z, , ∈ ,  the following four axioms are 

satisfied:  
(T1)  ( ) ( )T x y T y x, = ,                        (commutativity)  
(T2)  ( ( )) ( ( ) )T x T y z T T x y z, , = , ,          (associativity)  
(T3)  ( ) ( )T x y T x z, ≤ , ,whenever y z≤    (monotonicity)  
(T4)  ( 1)T x x, =                              (boundary condition).  
Definition 2. The t-norm T is called Archimedean if  
(AP)      for each 

2( ) ]0 1[x y, ∈ , ,there is an n∈N  with 
( )n
Tx y< .  

Definition 3. The t-norm T satisfies the cancellation law if  
(CL)       ( ) ( )T x y T x z, = ,  implies x=0 or y=z.  
Definition 4. The t-norm T satisfies the conditional cancellation law if  
(CCL)     ( ) ( ) 0T x y T x z, = , >  implies y=z.  
Definition 5. The t-norm T has the limit property if   

(lP)      for all ]0 1[x∈ , : 
( )lim 0n
Tn

x
→∞

=
  

Definition 6. A function F:
2[0 1] [0 1], → ,  is continuous if for all convergent sequences 

N( ) ( ) [0 1]n n n nx y∈ ∈, ∈ ,N N  we have  
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(lim lim ) lim ( )n n n nn n n
F x y F x y

→∞ →∞ →∞
, = ,  

( ) ( ) ( )( ) 0x y x y y x x y A∗ ∗ ∗ ∗ ∗ = ,∀ , ∈ . 

The following examples support that the four conditions in the BCK-algebra definition are 
independent. Therefore, in order to simplify the BCK-algebra definition we have to propose the 
equivalent new definition of BCK-algebra.  

. 

The first characterizations to the Archimedean of t-norms  
In this paragraph,in the basis of summarizing some Archimedean properties of t-norms,we 

characterize some new ones and give the proofs.  
Theorem 1. A continuous t-norm is Archimedean if and only if it satisfies the CCL.  
Proof: A continuous Archimedean t-norm is either nilpotent or strict. Each strict and each 

nilpotent t-norm fulfills the CCL.Thus necessity and sufficiency are obvious.  

Theorem 2. If 0
0lim ( )

x x
T x x x, <

�  for each 0 ]0 1[x ∈ , ,then T is Archimedean.  

Proof: assume 0
0lim ( )

x x
T x x x, <

�  for each 0 ]0 1[x ∈ , .  
Then because of the monotonicity (T3), 
we have 

0
0 0 0( ) lim ( )

x x
T x x T x x x, ≤ , <

�
 

for all 0 ]0 1[x ∈ , ,and T is Archimedean.  
A t-norm T is called strict if it is continuous and strictly monotone.Thus  
Theorem 3. If T is strict, then T is Archimedean.  
Proof: a strict t-norm is continuous and can have only trivial idempotent elements, Theorem 3 is 

a special case of  Theorem 2.  
Therefore we have, 
Theorem 4. If T is strictly monotone and continuous then T is Archimedean  
Theorem 5. If each ]0 1[x∈ ,  is a nilpotent element of T,then T is Archimedean.  
Proof: if each ]0 1[x∈ ,  is a nilpotent element of T then T satisfies LP and is Archimedean.  
Theorem 6. If T is nilpotent then T is Archimedean.  
Proof: each nilpotent t-norm T is isomorphic to LT  and LT  is Archimedean. Obviously T is 

Archimedean.  
Theorem 7. T has the limit property if and only if T is Archimedean.  
Theorem 8. T has only trivial idempotent elements and ,whenever  

0
0lim ( )

x x
T x x x, =

�
 

for some 0 ]0 1[x ∈ , ,there exists a 0 0] 1[y x∈ ,  such that 0 0 0( )T y y x, =  if and only if T is Archimedean.  
In fact Theorem 7 is equivalent to Theorem 8. In order Wto simply the proof. we write them as 

follows:  
For a t-non T the following are equivalent:  
(i) T is Archimedean.   
(ii) T satisfies the limit property (LP).  
(iii) T has only trivial idempotent elements and, whenever  

0
0lim ( )

x x
T x x x, =

�  
for some 0 ]0 1[x ∈ , ,there exists a 0 0] 1[y x∈ ,  such that 0 0 0( )T y y x, =  if and only if T is Archimedean.  
Proof: In order to show that (i) implies (iii). 
    Let T be Archimedean. The assumption that some ]0 1[a∈ ,  is an idempotent element of T 

implies 
( )n
Ta a=  for all n∈N , so T can have only trivial idempotent elements.  
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If 0
0lim ( )

x x
T x x x, =

�  for some 0 ]0 1[x ∈ ,  and for all 0] [y x l∈ ,  we have 0( )T y y x, >  then, by induction, we 
also have  

( )
0

n
Ty x>  

for all 0] [y x l∈ ,  and for all n∈N , again violating (AP).  

If T satisfies (iii), fix an arbitrary ]0 1[x∈ ,  and put 
( )

0 lim n
Tn

x x
→∞

=
. Then, because of the monotonicity 

(T3), we also have  

0
0lim ( )

y x
T y y x, =

�  . 
If 0 0x >  then there is some 0 0] [y x l∈ ,  such that 0 0 0( )T y y x, =  and also 

( )
0

n
Tx y<  for Some n∈N , 

implying that we must have  
(2 )

0
n

Tx x=  
for all sufficiently large n∈N , leading to the contradiction  

(4 )
0 0 0( ) n

TT x x x x, = =  
Consequently, the only possibility is 0 0x = . Since ]0 1[x∈ ,  was chosen arbitrarily, T satisfies (LP).   

Finally, assume that T satisfies (ii) and choose ]0 1[x y, ∈ , . Because of 
( )lim 0n
Tn

x
→∞

=
, there exists an 

n∈N  such that 
( )n
Tx y<  

T is Archimedean, showing that (ii) implies (i).  
The logical relationship between various algebraic properties of t-norms, a double arrow 

indicates an implication, a dotted arrow means that the corresponding implication holds for 
continuous t-norms.  

In addition, Archimedean t-norms also have important properties, we only give the Theorem 10, 
and the other proofs will be omitted:  

Theorem 9. Each left-continuous cancellative Archimedean t-norm is continuous.  
In fact the calculative is not necessary. Here it can be weakened as follows:  
Theorem 10. Each left-continuous Archimedean t-norm is continuous.  
Proof:asssume that T is left-continuous and Archimedean , but not right-continuous in some 

point 
2

0 0( ) ]0 1[x y, ∈ , .Then fix an arbitrary strictly increasing sequence ( )n nz ∈N  in [0 1],  with 
lim 1nn

z
→∞

=
.  

Since T is Archimedean ,for each n∈N  there exist numbers n nk l, ∈N  such that   
1

0( ) ( )n nk k
n T n Tz x z −≤ < ,  

1
0( ) ( )n nl l

n T n Tz x z −≤ < .  
implying that for all n∈N   

2
0 0 0 0( ) ( ) ( ) ( )n n n nk l k l

n T n Tz T x y T x y z+ + −+ +≤ , < , ≤ .  
The left-continuity of T yields 

(2)lim( ) 1n Tn
z

→∞
=

 and, consequently,  
(2)

0 0 0 0lim ( ( ) ( ) ) ( )n Tn
T T x y z T x y+ + + +

→∞
, , = ,

 
But then there is some n∈N  such that  

0 0( ) ( )n nk l
n Tz T x y+ ≤ ,  

(2)
0 0( ( ) ( ) )n TT T x y z+ +< , ,  

2 (2)(( ) ( ) )n nk l
n T n TT z z+ −≤ ,  ( ) n nk l

n Tz += . 
which is contradiction. Therefore, we have:  
Theorem 11. Each cancellative Archimedean t-norm which is (left-)continuous in the point (1,1) 

is continuous. 
Theorem 12. Let T be a continuous Archimedean t-norm. Then the following are equivalent: 
(i) T is nilpotent. 
(ii) There exists some nilpotent element of T. 
(iii) There exists some zero divisor of T. 
(iv) T is not strict. 
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The second characterizations to the Archimedean of t-norms  
Theorem 1. T is right-continuous and has only trivial idempotent elements then it is 

Archimedean.  
Proof:If a right-continuous t-norm T has only trivial idempotent elements then T satisfies (LP) 

by Proposition 2.6 (see [1]) and ,because of Theorem 2.12(see [1]),T is Archimedean.  
It is easy to see T is continuous and has only trivial idempotent elements then it is Archimedean.  
Theorem 2. If T is right-continuous and satisfies the CCL then it is Archimedean.  
Proof: for an arbitrary ]0 1[x∈ ,  the sequence 

( )( )n
T nx ∈N  converges to some [0 1]a∈ ,  which is an 

idempotent element of T because of Proposition 2.6 (see [1]).Conversely, we have ( ) ( 1)T a a T a, = ,  
and, because of (CCL),a=0,i.e.,T has the LP and, because of Theorem 2.12 (see [1]), is 
Archimedean.  Similarly,  

Theorem 3. T is continuous and satisfies the CCL then it is Archimedean.  
Theorem 4. T is continuous and satisfies the CL then it is Archimedean.  
Proof: If  t-norm T satisfies CCL, 
then we can obtain y=z  by 

( ) ( ) 0T x y T x z, = , > , 
if ( ) ( ) 0T x y T x z, = , = , then we can obtain y=z or x=0.Since T has no zero divisor ,x can’t be 

0.Therefore T satisfies CL.  
Definition 7.  let T be a conditional calculative left-continuous t-norm which has no zero divisor, 

then T is not necessarily continuous. This example can show a conditional cancellative left-
continuous t-norm Which is continuous in (1,1) is not necessarily continuous. 

Ramark 1. If a t-norm T satisfies the CL then it obviously fulfills the CCL, but not conversely. In 
this sense ,we also obtain Theorem 4 . 

Although Theorem 2 and Theorem.3 are correct for t-norms T, left-continuous conditional 
cancellative t-norm T is not necessarily Archimedean. For example, each 

2( , ) ]0 1]x y ∈ ,  is in a one-to-
one correspondence with a pair (( ) , ( ) )n n N n n Nx y∈ ∈  of strictly increasing sequences of natural numbers 
given by the unique infinite dyadic representations. 

1

1
2 nx

n
x

∞

=

= ∑
 

1

1
2 ny

n
y

∞

=

= ∑
 

of the numbers x and y, respectively .Using this notion ,then the t-norm  
2: [0,1] [0,1]T →  given by 

2

1

1 ( , ) [0,1]
( , )                      ( )2

0 otherwise

n nx y n
n

x y
T x y

∞

+ −
=


∈= ∗



∑  

is strictly monotone ,therefor  is  calculative ,furthermore it 
is conditional cancellative, left-continuous on  

2[0,1] but it is 
neither Archimedean nor continuous 
Theorem 5. If continuous t-norm T satisfies the CCL and has no zero divisor, then it is 

Archimedean.  
All the implication between the algebraic properties of t-norms considered so far are summarized 

and visualized in Figure 1. Now we characterize some new properties.  
Ramark 2. If  t-norm T satisfies CCL and has no zero divisor, then T necessarily satisfies CL. 
 Proof: If  t-norm T satisfies CCL, then we can obtain y=z by ( ) ( ) 0T x y T x z, = , >  ,if 

( ) ( ) 0T x y T x z, = , = , then we  can obtain y=z or x=0. 
Since T has no zero divisor, x can't be 0.Therefore T satisfies CL. Thus let T be a conditional 

cancellative left-continuous t-norm which has no zero divisor, then T is not necessarily 
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continuous.(see(*)). This example can show  a conditional calculative left-continuous t-norm  
Which is continuous in (1,1) is not necessarily continuous(This open 

problem  see[2]). 
Theorem 6. T is continuous Archimedean t-norm and has no zero-divisors then T is strict. 
Proof: Because of monotonicity , we have  

( ) ( )T x y T x z, ≤ ,  
 whenever y z< . T has no zero divisors, so 

( ) 0 ( ) 0T x y T x z, ≠ , , ≠  
 we will show ( ) ( )T x y T x z, < , .  
if ( ) ( ) 0T x y T x z, = , > ,then T satisfies the CCL. as well known ,continuous Archimedean t-norm is 

either nilpotent or strict. If t-norm is strict ,obviously t satisfies the CL, then it satisfies the CCL.  
If t-norm is nilpotent, the continuity of T implies that there exists a number [ [a v l∈ ,  such that 

( )y T z a= , Then 

( )

( ) ( ) ( ( ))
          ( ( ) ) ( ( ) )n

T

T x z T x y T x T z a
T T x z a T T x z a

, = , = , ,

= , , = ⋅⋅ ⋅ = , , , 
for any n∈N .because of the nilpotent of T, we obtain ( ) 0T x z, = .so T satisfies the CCL. so 

y z= ,it violates the y z< . then ( ) ( )T x y T x z, < , . e.g. T is strictly. Therefore T is strict. 

Conclusions  
we consider the Archimedean properties of t-norms. We summarize some Archimedean 

properties and characterize some new Archimedean properties of triangular norms on ([0 1] ), ,≤ . 
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