
Adaptive Single-Block Hash Function for Short Message
Zhen-zhen Wang，Yong-zhen Li*

Network & Information Security Lab,Yanbian University,Yanji, Jilin, China
1147430753@qq.com, 1147430753@qq.com

Keywords : Adaptive; Single-block hash function; Birthday attack; Avalanche effect; 0-1 balanced.

Abstract. An adaptive single-block hash function was designed and realized for short message in
this paper to effectively solve the drawbacks of MD5 or SHA, such as the padding redundancy and
fixed message digest. It took 128, 256 or 512 bits as input, and 128, 160, 192, 224 or 256 bits as
output. Its characteristic is that the input is adaptive based on short message length for reducing
padding redundancy, the output is also adjustable for applying to the security applications that
requires the digest with variable length. The experimental result showed that the purposed hash
function meet the strict avalanche effect, 0-1 balanced and has good ability against the attack.

Introduction
Hash function[1] is the mathematically complex algorithm that compresses an arbitrary input

message into a fixed-length value, which is commonly called “message digest”, and it can be
applicable for providing the message integrity and user message authentication service in the field of
the various computer security applications and network protocols. Traditional hash function such as
MD algorithm[2] and SHA algorithm[3-5], has high operating efficiency in terms of the file or the
larger message data processing, while it is not ideal for short message.

In our everyday life, short message is widely used, such as the message of daily chat session, the
RFID electronic tag, message authentication code, user identity authentication code and so on, it is
very urgent that the security problems in short message needed to be highly valued. J.Y. Wang put
forward the Single-Block Hash Function (SBH)[6], which was designed according to the property of
short message and has been applied to the web security password authentication[7]. We designed a
new hash function algorithm with more secure and flexible.

HAVAL[8] is a secure hashing algorithm proposed by Y.L. Zheng, which has a variable output
length of 128, 160, 192, 224, 256 bits-length, we proposed an adaptive single-block hash function,
which was called ASBH algorithm. Its characteristic is that the input is adaptive based on short
message length for reducing redundancy of padding, the output is also adjustable for applying to the
security applications that requires the digest with variable length. And ASBH algorithm is promoted
with respect to the security compared with SBH by increasing another four chaining variables.

Two hash functions

A. Single-block hash function
Nowadays, hash function algorithm applies to the data integrity and non-repudiation verification

widely. However, little work has been done in the design of a hashing algorithm based on the
feature of short message. When using traditional hash function to deal with short message, taking
SHA algorithm for example, it divided 1024 bits into a group in the initialization phase, a large
number of 1 and 0 were filled. These regular populate not only added unnecessary operations, but
also decreased the computation efficiency of the algorithm.

Single-block hash function algorithm(SBH) is processed by 32-step computation only for the
characters whose length is less than or equal to 512 bits, which we call short message in this paper.
It takes 256-bit as input and 128-bit as output, its performance is comparatively improved with that
of the MD5 and SHA algorithm for short messages processing.

International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015)

© 2015. The authors - Published by Atlantis Press 1150

B. Hash function with variable length of output
HAVAL maps a message of arbitrary length into a digest of 128, 160, 192, 224 or 256 bits.

Furthmore, HAVAL has a parameter that controls the number of passes a block is processed. A
block can be processed in 3, 4 or 5 passes. By combining output length with pass, it can provide
fifteen choices for practical applications where different levels of security are required. Hash
function with variable length of output become more flexible and available, due to the different
length of message digest provides a wider range of choice. In recent years, some new hash
function[9] has been proposed based on HAVAL.

Design of Adaptive Single-Block Hash Function (ASBH)
In this section, we will elaborate ASBH hash function detailed. One of the meaning of adaptive

is that the input of compression function could adjust automatically according to the original length
of the message, while the output could adapt based on the security levels.
A.Preprocessing stage

There is a pretreatment before processing messages using ASBH hash function. The input of
compression function is obtained by using the original input in XOR operation with array T[i],
where every element is a 32-bit words. And T[i] = 232*abs(sin(i)), the unit of i is the radian, T[i]
plays a role in producing a random constant in order to eliminate regularity of input data. Several
parameters will be influenced by the original length of message, as depicted in Table 1.

TABLE 1. THE RELATIONSHIPS BETWEEN EACH PARAMETER
Original

length(bit): n
Length of
array T[i]

Adapted
length(bit)

The total
steps

0＜n≤128 4 128 4*4
128＜n≤256 8 256 8*4
256＜n≤512 16 512 16*4

Eight chaining variables are initialized to the following values in hexadecimal, low-order bytes

first:
A=0x01234567, B=0x89abcdef, C=0xfedcba98, D=0x76543210, E=0xf0e1d2c3,

F=0x9687b4a5, G=0x3c2d1e0f, H=0x5a4b7869.
B.Compressing algorithm

The compressing algorithm of ASBH consists of 4 stages, termed round, and the structure of
each round is similar to that of other. In addtion, each round is composed of APL/25 similar
operations, where APL denote the adapted length, and operation steps in each round is determined
by APL, see Table 1. The overall logic is described in Fig. 1.

F1、F2 X[i] K1 APL/25 steps

F3、F4 X[ρ2(i)] K2 APL/25 steps

F1、F3 X[ρ3(i)] K3 APL/25 steps

 F2、F4 X[ρ4(i)] K4 APL/25 steps

Tailoring the output

IVi(256-bit)Adapted data：X

Figure 1. The compressing algorithm

The adapted data which is being processed divides into APL/25 32-bit groups Xi, X[0,1,…,
APL/25-1]. The order of processing groups Xi is distinct in each round. In the first round, the order
is X[0,1,…, APL/25-1], and the second, third and fourth round in operation, the order is determined
by ρ2(i), ρ3(i) and ρ4(i) respectively, where

ρ2(i) = (1+5i) mod APL/25,

1151

ρ3(i) = (5+3i) mod APL/25,
ρ4(i) = 7i mod APL/25.
where 0≤i≤APL/25-1.
Each round is composed of APL/25 similar steps. The single step operation logic of ASBH hash

function is illustrated in Fig. 2.

Figure 2. Each step operation

There are four non-linear functions, two of them(Fi, Fj) are used in each round, see Figure 1.
They are:

F1(X,Y,Z)=(X&Y)|((~X)&Z)
F2(X,Y,Z)=(X&Z)|(Y&(~Z))
F3(X,Y,Z)=X⊕Y⊕Z
F4(X,Y,Z)=Y⊕(X|(~Z))

Where & = and, | = or, ~ = not, ⊕ = xor. If corresponding bits of X, Y and Z are independent
and uniform, each bit of the result is also independent and uniform; and ∑1 = ROTR1(x)⊕
ROTR8(x)⊕SHR7(x), ∑2 = ROTR19(x)⊕ROTR23(x)⊕SHR6(x); ROTRn(x) stands for circular
right shift (rotation) of the 32-bit argument x by n bits; SHRn(x) represents left shift of the 32-bit
argument x by n bits with padding by zeros on the right.

In addition, Each round also makes use of an additive constant Kt, where 1≤t≤4 indicates one of
the four rounds, these constants are showed in hexadecimal format:

K1 = 0x5a827999, K2 = 0x6ed9eba1,
K3 = 0x8f1bbcdc, K4 = 0xca62c1d6.

C. Tailoring the lash output
Recall that the last output is of 256-bit which is saved in chaining variable ABCDEFGH.

According to security requirements, we discuss the five cases that need adjustment to the output.
These five cases are 256-bit, 224-bit, 192-bit, 160-bit and 128-bit digests. In the following
discussions, we assume that X[n] indicates X is a n-bit string, furthermore, Xi,j denotes the j-th bit
string of the chaining variable i. And we defined that Qi[n] is the last n-string of the register i.

Case-1(256-bit):
 Don't need to make any cutting, the output is used directly as the digest.
Case-2(224-bit): We divide H into
 H = XH,6

[5]XH,5
[5]XH,4

[4]XH,3
[5]XH,2

[4]XH,1
[5]XH,0

[4].
The 224-bit digest is Y6Y5Y4Y3Y2Y1Y0, where

 Y6 = QG
[4] ⊕ XH,0

[4], Y5 = QF
[5] ⊕ XH,1

[5], Y4 = QE
[4]⊕XH,2

[4],
 Y3 = QD

 [5] ⊕XH,3
[5], Y2 = QC

[4]⊕XH,4
[4], Y1 = QB

[5]⊕ XH,5
[5],

 Y0 = QA
 [5] ⊕ XH,6

[5].
Case-3(192-bit): Divide H and G respectively into

H= XH,5
[6]XH,4

[5]XH,3
[5]XH,2

[6]XH,1
[5]XH,0

[5], G
= XG,5

[6]XG,4
[5]XG,3

[5]XG,2
[6]XG,1

[5]XG,0
[5].

Then the 192-bit digest Y5Y4Y3Y2Y1Y0 is obtained by computing
 Y5 = QG

[11] ⊕ (XH,5
[6] XG,4

[5]),
 Y4 = QE

[10] ⊕ (XH,4
[5] XG,3

[5]),

1152

 Y3 = QD
[11] ⊕ (XH,3

[5] XG,2
[6]),

 Y2 = QC
[11] ⊕ (XH,2

[6] XG,1
[5]),

 Y1 = QB
[10] ⊕ (XH,1

[5] XG,0
[5]),

 Y0 = QA
[11] ⊕ (XH,0

[5] XG,5
[6]).

Case-4(192-bit): We divide H, G and F in following way
 H = XH,4

[7]XH,3
[6]XH,2

[7]XH,1
[6]XH,0

[6],
 G = XG,4

[7]XG,3
[6]XG,2

[7]XG,1
[6]XG,0

[6],
 F = XF,4

[7]XF,3
[6]XF,2

[7]XF,1
[6]XF,0

[6].
Then 192-bit digest is Y4Y3Y2Y1Y0, where

 Y4 = QE
[20] ⊕ (XH,4

[7] XG,3
[6] XF,2

[7]),
 Y3 = QD

[19] ⊕ (XH,3
[6] XG,2

[7] XF,1
[6]),

 Y2 = QC
[19] ⊕ (XH,2

[7] XG,1
[6] XF,0

[6]),
 Y1 = QB

[19] ⊕ (XH,1
[6] XG,0

[6] XF,4
[7]),

 Y0 = QA
[19] ⊕ (XH,0

[6] XG,4
[7] XF,3

[6]).
Case-5(128-bit): We divide H, G, F and E into

 H = XH,3
[8]XH,2

[8]XH,1
[8]XH,0

[8],
 G = XG,3

[8]XG,2
[8]XG,1

[8]XG,0
[8],

 F = XF,3
[8]XF,2

[8]XF,1
[8]XF,0

[8],
 E = XE,3

[8]XE,2
[8]XE,1

[8]XE,0
[8].

Then 128-bit digest is Y3Y2Y1Y0, where
 Y3 = QD

[32] ⊕ (XH,3
[8] XG,2

[8] XF,1
[8] XE,0

[8]) ,
 Y2 = QC

[32] ⊕ (XH,2
[8] XG,1

[8] XF,0
[8] XE,3

[8]),
 Y1 = QB

[32] ⊕ (XH,1
[8] XG,0

[8] XF,3
[8] XE,2

[8]),
 Y0 = QA

[32] ⊕ (XH,0
[8] XG,3

[8] XF,2
[8] XE,1

[8]).
Experiment and Analysis
Several properties are required for the practical application of a hash function. With good

avalanche effect and being 0-1 balanced are ones of significant design principles of a hash function.
In this section, we analysis avalanch effect and Hamming weight of MD5 and ASBH contrastively,
and have a security analysis on ASBH in theory.

In experiment, we took 103 a pair of binary string which only differed a bit as input, then
verifying the rationality and the degree of safety of ASBH hash function by comparing the
percentage of changed bit of two outputs and Hamming weight.
D. Avalanche effect

We say that function f satisfies the Strict Avalanche Criterion(SAC) if for every 1≤i≤n,
complementing X[i] results in the output of f being complemented 50% of the time over all possible
input vectors. Fig. 3 displays the average and variance of avalanche effect of MD5 and ASBH.

0 500 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
MD5

run times

av
al

an
ch

 e
ffe

ct

0 500 1000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
ASBH 128-bit

run times

av
al

an
ch

 e
ffe

ct

average=0.5037,variance=0.0019 average=0.5024,variance=0.0019

0 500 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
ASBH 160-bit

run times

av
al

an
ch

 e
ffe

ct

0 500 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
ASBH 192-bit

run times

av
al

an
ch

 e
ffe

ct

1153

average=0.5017,variance=0.0015 average=0.5020,variance=0.0013

0 500 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
ASBH 224-bit

run times

av
al

an
ch

 e
ffe

ct

0 500 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
ASBH 256-bit

run times

av
al

an
ch

 e
ffe

ct

average=0.4989,variance=0.0011 average=0.5010,variance=0.0010

Figure 3. Avalanch effect of MD5 and ASBH
Compared with MD5, ASBH is much better in terms of avalance effect, regardless of the length.

The smaller the variance, the more concentrated the avalanche effect to the average.
E. Hamming weight

We say that a function f is 0-1 balanced if the number of 1 bits and the number of 0 bits in the
sequence of f are the same. In addition, the Hamming weight of a string of bits is the number of 1's
in the string. The expriment result is illustrated in Fig. 4. It is obviously that ASBH meets the
principle of 0-1 balanced.

0 500 1000
40

50

60
64

70

80

90
MD5

run times

H
an

m
in

g
w

ei
gh

t

 0 500 1000
40

50

60
64

70

80

90
ASBH 128-bit

run times

H
an

m
in

g
w

ei
gh

t

avarage = 63.7330 avarage = 63.9130

0 500 1000
60

70

80

90

100
ASBH 160-bit

run times

H
an

m
in

g
w

ei
gh

t

0 500 1000

70

80

90

96
100

110

120
ASBH 192-bit

run times

H
an

m
in

g
w

ei
gh

t

 avarage = 79.9840 avarage = 96.0760

0 500 1000

80

90

100

112

120

130

140
ASBH 224-bit

run times

H
an

m
in

g
w

ei
gh

t

0 500 1000

100

110

120

128

140

150

160

170
ASBH 256-bit

run times

H
an

m
in

g
w

ei
gh

t

avarage = 112.0750 avarage = 128.2190
Figure 4. Hamming weight of MD5 and ASBH

F. Security analysis
Another method to evaluate the safety of hash function is to analyze its ability against the attack.

We consider that the digest of ASBH hash is the minimum value, 128-bit, and attackers use MIPS-
years, which is a million-instructions-per-second processor running for one year, to attack. For brute
force, it needs 2128/(106*60*60*24*365) =1.079*1025 years, namely about 1025 years. For
birthday attack, it needs 264/(106*60*60*24*365) =5.849*105 years, namely about 6*105 years.
From the above, we can conclude that ASBH hash function has the certain reliability.

1154

Conclusion
In this paper, we took the merits of SBH and HAVAL for reference, put forward a new hash

function, adaptive single-block hash function ASBH. ASBH hash function is strictly in accordance
with the design principle of hash function and takes the characteristic of short message into
consideration. Its characteristic is that the input is adaptive based on short message length, which
could reduce redundancy of padding, and the output is also adjustable for applying to the security
applications that requires the digest with variable length, which could make the algorithm more
flexible and efficient.

The analysis of the experimental data showed that for different length of digest, ASBH hash
function is practical. One bit change in input has caused approximately 50% change in output, and
Hamming weight has revealed ASBH is 0-1 balanced. ASBH ensures the security and it safe
enough to apply in practical applications where digests of variable length are required.

References
[1] S. William, Cryptography and Network Security: Principles and Practice, Fifth Edition ,

Publishing House of Electronic Industry, China (2011)
[2] Y.Z. Zhang, Y. Zhao and X.B. Tang, MD5 Algorithm. Computer Science, 9, 35 (2008)
[3] H. Handschuh. Encyclopedia of Cryptography and Security. Springer (2011) pp. 1190-1193.
[4] B. Preneel. Encyclopedia of Cryptography and Security. Springer (2011) pp. 27-29.
[5] J. Aumasson and O. Dunkelman. Cryptanalysis of Dynamic SHA(2). Selected Areas in

Cryptography: 16th International Workshop, (2009) August 13-14; Calgary, Alberta, Canada
[6] J.Y. Wang, Y.Z. Li, The Design and Realization of the Single-Block Hash Function for the

Short Message. Applied Mechanics and Materials, (2013) July 23-24; Zhuhai, China
[7] S.Q. Wang, J.Y. Wang and Y.Z. Li, The Web Security Password Authentication based the

Single-Block Hash Function. 2013 International Conference on Electronic Engineering and
Computer Science. (2013) March; Tokyo, Japan

[8] Y. Zheng, P. Josef and S. Jennifer, HAVAL One-way Hashing Algorithm with Variable Length
of Output. Advances in Cryptology AUSCRYPT’92 Proceedings. (1993) Berlin, Germany.

[9] J.H. Ryu and J.C. Na, Hash Function for Variable Output Length. 2009 Fifth International Joint
Conference on INC, IMS and IDC. (2009) Seoul, Korea

1155

	A. Single-block hash function
	B. Hash function with variable length of output
	A.Preprocessing stage
	Table 1. The relationships between each parameter
	B.Compressing algorithm

	K1 = 0x5a827999, K2 = 0x6ed9eba1,
	K3 = 0x8f1bbcdc, K4 = 0xca62c1d6.
	C. Tailoring the lash output

	H= XRH,5RP[6]PXRH,4RP[5]PXRH,3RP[5]PXRH,2RP[6]PXRH,1RP[5]PXRH,0RP[5]P, G
	= XRG,5RP[6]PXRG,4RP[5]PXRG,3RP[5]PXRG,2RP[6]PXRG,1RP[5]PXRG,0RP[5]P.
	YR5R = QRGRP[11]P ⊕ (XRH,5RP[6]P XRG,4RP[5]P),
	YR4R = QRERP[10]P ⊕ (XRH,4RP[5]P XRG,3RP[5]P),
	YR3R = QRDRP[11]P ⊕ (XRH,3RP[5]P XRG,2RP[6]P),
	YR2R = QRCRP[11]P ⊕ (XRH,2RP[6]P XRG,1RP[5]P),
	YR1R = QRBRP[10]P ⊕ (XRH,1RP[5]P XRG,0RP[5]P),
	YR0 R= QRARP[11]P ⊕ (XRH,0RP[5]P XRG,5RP[6]P).
	H = XRH,4RP[7]PXRH,3RP[6]PXRH,2RP[7]PXRH,1RP[6]PXRH,0RP[6]P,
	G = XRG,4RP[7]PXRG,3RP[6]PXRG,2RP[7]PXRG,1RP[6]PXRG,0RP[6]P,
	YR4R = QRERP[20]P ⊕ (XRH,4RP[7] PXRG,3RP[6]P XRF,2RP[7]P),
	YR3R = QRDRP[19]P ⊕ (XRH,3RP[6] PXRG,2RP[7]P XRF,1RP[6]P),
	YR2R = QRCRP[19]P ⊕ (XRH,2RP[7]P XRG,1RP[6]P XRF,0RP[6]P),
	YR1R = QRBRP[19]P ⊕ (XRH,1RP[6] PXRG,0RP[6]P XRF,4RP[7]P),
	YR0R = QRARP[19]P ⊕ (XRH,0RP[6] PXRG,4RP[7]P XRF,3RP[6]P).
	H = XRH,3RP[8]PXRH,2RP[8]PXRH,1RP[8]PXRH,0RP[8]P,
	G = XRG,3RP[8]PXRG,2RP[8]PXRG,1RP[8]PXRG,0RP[8]P,
	YR3R = QRDRP[32]P ⊕ (XRH,3RP[8] PXRG,2RP[8] PXRF,1RP[8]P XRE,0RP[8]P) ,
	YR2R = QRCRP[32]P ⊕ (XRH,2RP[8]P XRG,1RP[8]P XRF,0RP[8] PXRE,3RP[8]P),
	D. Avalanche effect
	E. Hamming weight
	F. Security analysis

