
Error Detection for Floating-Point Program via Branch and Bound
Method

Kai Song1, Xia Zeng1, Min Tang2

1Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai,
China

2School of Mathematics and Computing Science ,Guilin University of Electrical Technology ,Guilin,
China

e-mail: kaisong@ecnu.cn

Keywords:floating-point; error detection; program rewriting; branch and bound;GNU Scientific
Library

Abstract. It is well-known that writing an error-free floating-point program is very difficult. Thus,
detecting unacceptable errors of a floating-point program is important. In this paper, we develop a
system named SpaceAED. The main function of this system is to automatically detect unacceptable
errors of a floating-point program written in C programming language. The key insight of this work
is to use interval arithmetic in conjunction with branch and bound technique. The implementation of
SpaceAED is to rewrite a floating-point program to one that can run on interval arithmetic, and then
use branch and bound technique to find all inputs that can trigger unacceptable errors. We choose a
great many of functions in GNU Scientific Library (GSL) to test SpaceAED, including matrix
computations and evaluation of special functions etc. Numerical results show that SpaceAED is
available for accurately detecting unacceptable error-triggering inputs of numerical functions.

Introduction
On June 4, 1996, Ariane 5 rocket, launched by European Space Agency, ended in failure because

of an error that converts data from a 64-bit floating point number to a 16-bit signed integer value to
overflow[1]. On February 3, 2010, Toyota recalled vehicles because of anti-lock brake software [2].
Numeric program, which manipulates floating-point arithmetic, plays a critical role in many fields of
national defense, transportation, finance. Clearly, nowadays our people increasingly rely on numeric
program. Floating-point numbers are the finite precision encoding of real numbers, the result of their
operations are not exactly representable but rounded[3]. Rounding errors, if it manages to
accumulate sufficiently, may probably destroy a numeric result[4, 15]. C language is the most widely
used programming language in industry such as in aerospace engineering, due to a combination of
characteristics such as code portability, efficiency, low runtime system resource demand and so
on[5]. Therefore, research on error analysis for numeric program written in C language has important
scientific value and practicalsignificance.

Theoretical analysis on floating-point arithmetic has been extensively studied. Jean-Michel
Muller systematically presents basic concepts of floating-point arithmetic including
formats, exceptions, rounding modes etc.[6]. Ramon E. Moore presents basics of interval arithmetic,
which is the most common used method to keep track of and analyze rounding errors arising from
each floating-point operation [4]. However, little work has been carried on error analysis of floating-
point code. In this paper, we consider a problem that how to detect all of inputs triggering
unacceptable error specified by users for a given numeric program, which is a challenging problem.

Based on interval arithmetic, we propose an algorithm using branch and bound method[7] to
efficiently detect all the unacceptable error-triggering inputs of a given floating-point program. To
this end, we rewrite a numeric program to one that can be run on interval arithmetic. Then we run the
rewritten program with the given inputs. When it terminates, the rewritten program will report all
unacceptable error-triggering inputs.

International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015)

© 2015. The authors - Published by Atlantis Press 1206

Our approach, which we have called SpaceAED, automatically detects all unacceptable error-
triggering inputs. Program that run on an arbitrary pair of those inputs will certainly produce an
unacceptable error. When SpaceAED finds all the unacceptable error-triggering inputs, developers
are able to exactly use a program without triggering unacceptable error.

To realize SpaceAED, we first use Flex and Bison[8] to generate abstract syntax tree(AST) by
building C language syntax analyzer. Then we rewrite numeric program written in C language to the
form that can run on Boost Library[9] by traversing AST. Finally we finish the module of detecting
all the unacceptable error-triggering inputs by using branch and bound method[10,11].

Our contributions are as follows.
•A practical method for detecting unacceptable error based on branch and bound method.
•A system that can automatically detect all the unacceptable error-triggering inputs and its

evaluation on the GNU Scientific Library(GSL).
The paper is organized as follows. Section 2 gives a program drawn from GSL to clarify our

problem. Section 3 introduces how to implement program rewriting and how to complete error
detection via branch and bound method. In section 4, we take three examples to demonstrate
howSpaceAED works out in practice and show the results of experiment. Some concluding remarks
are made in Section 5.

Figure 1. GSL’s implementation of gsl_complex_exp.

ILLUSTRATIVE EXAMPLE
In order to clarify our problem, we use a function, gsl_complex_exp(gsl_complex z), drawn from

the GSL complex functions. And it returns the complex exponential of the complex number z. Fig.
1gives the GSL’s implement-
ation of gsl_complex_exp.

We declare a gsl_complex variable a as input and take a.dat[0]=1.53 and a.dat[1]=2.15. Then we
declare another gsl_complex variable b as input and take b.dat[0]=1.531 and b.dat[1]=2.151. Here
we use||f(b)-f(a)||2/||b-a||2to obtain relative error, wherefmeans gsl_complex_exp and ||||2denotes 2-
norm. According to the previous formula, the relative error is 1212.9. However, in the case that
a.dat[0]=
10.82,a.dat[1]=12.26,b.dat[0]=10.821 and b.dat[1]=12.261, the relative error is 1.06512e+007.

Based on the analysis of the two results above, it is obvious that for a given program, the relative
error at some point is very small while that at another point is very large enough to probably destroy
a numeric result. Therefore, it is important and necessary to detect all inputs of gsl_complex_
exp that can trigger unacceptable error specified by users.

1. typedef struct{
2.double dat[2];
3. }gsl_complex;
4. gsl_complexgsl_complex_exp (gsl_complex a){
5. /* z=exp(a) */
6. double rho = exp (GSL_REAL (a));
7.double theta = GSL_IMAG (a);
8.gsl_complex z;
9. GSL_SET_COMPLEX (&z,
10. rho * cos (theta), rho * sin (theta));
11. return z;
12. }

1207

Figure 2. A region formed byall unacceptable error-triggering inputs.

Let dat[0] and dat[1] be bounded by interval [13,15]. Run on this function, SpaceAED reports that all
the inputs on dat[0] and dat[1], which trigger unacceptable error. The shadow area in Fig. 2 is
formed by all the unacceptable error-triggering inputs on dat[0] and dat[1] and the small shadow
rectangle represents one unacceptable error-triggering inputs region.

APPROACH
Since SpaceAED analyzes programs not functions, the architecture of SpaceAED, which is given

by Fig. 3, describes two main phases. Phase one automatically rewrites a numeric program written in
C language into one that can be run on Boost library, which is mature, well-tested, well-maintained
andprovides support for interval arithmetic[9]. During phase two, SpaceAED runs the rewritten
program with inputs on interval and reports all the inputs that trigger unacceptable error when it
terminates. The key challenge in its implementation is how to efficiently detect all those inputs of
one program, whose input are usually multiple parameters.

We first describe the implementation of program rewriting of our error detection tool, SpaceAED
(see Section 3.1) and how we detect all unacceptable error-triggering inputs for a given floating-
point program (see Section 3.2).
A. Program Rewriting

In order to transform a numeric program written in C language into a form that can be run on
Boost library, we design a transformer that takes a numeric program written in C language and
rewrites its float and double types into intv_float and intv_double respectively, both of which are
defined in Boost library.Besides rewriting types, it also rewrites floating-point relation expression.
For instance, x>= y is transformed to x.lower() >= y.upper() and x<= 0.5 is transformed to x.upper()
<= 0.5. In addition to previous rewriting rules, it also has another rewriting rule R(C[e])=C[R[e]] in
global context, where R denotes our transformer, e means an expression or declaration of floating-
point, and C stands for a numeric program context.

Based on the rewriting rules above and characteristics of C programming language, we will
implement program rewriting based on abstract syntax tree, which is often used in program analysis
and program transformation systems[13].

1) Abstract Syntax Tree Generation
Abstract syntax tree is a data structure widely used in compliers and often serves as a tree

representation of a program. Generating AST takes three steps: lexical analysis, syntax analysis and
semantic analysis.

In order to generate abstract syntax tree, we exploit Flex and Bison, which are open source tools
for building programs that handle structural inputs. Fig. 4 depicts the process of abstract syntax tree
generation.

1208

a) Lexical analysis
We group characters into lexical units or tokens. It is implemented by using Flex to write lexical

analysis program lex.l, compiling it into .c file, and executing .c file to decompose the source code
into tokens.

Figure 3. The architecture of SpaceAED.

b) Syntax analysis
We group tokens into syntactical units, is implemented by using Bison to write syntax analysis

program parser.y, compiling it to generate .c file and .h file, and executing the .c file and .h file to get
a parse tree representation of the program. However, the parse tree is not completed and will be
refined by semantic analysis.

c) Semantic analysis
We analyze the parse tree for context-sensitive in-formation concerning variables and other

objects, which is stored in a symbol table and produce a completed syntax tree containing all the
information of the structure of the program.

In this paper, we generate the abstract syntax tree based on object-oriented principle, every node
in which represents a syntax structure, such as identifier, expression, statement, declaration,
compound statement, function declaration, function body.

Figure 4. Process of abstract syntax tree generation.

2) Code Transformation
Through the previous process, abstract syntax tree and symbol table have already been generated.

Then we will implement code transformation by traversing the syntax tree. Here we will exploit
recursive call technique to traverse syntax tree. The below is our algorithm CTAST(code
transformation via AST) for transforming code.

Algorithm CTAST. This algorithm takes a rewriting rule list L and root of a given numeric
program p, then returns root of rewritten numeric program new_p.
(1) IF L is not empty THEN

(a) Set [1]CR L← and remove the first item from L;
(b) RewriteFunc(p)

IF(p is NULL) THEN
RETURN;

ELSE
IF(semantic of p conform to CR)

1.new_p:= rewrite(p);
2.RETURN new_p;

 ElSE
For(from left to right traversing each subNode SN of p)

RewriteFunc(SN);

AST

Source
code

parser.y lex.l

Lexical
analysis
(Flex)

Syntax
analysis
(Bison)

Semantic
analysis

Input Code
Written in C

Program
Rewriting

Rewritten Code
onBoost Library

Error

Detection Error
Triggering

Inputs

1209

END For
 END IF
 END IF
END IF

Remark. In step(a), CR means current rewriting rule. In step(b), subroutine rewrite is an concrete
function for how to transform code based on CR in details.
B. Error Detection

For the problem that how to detect all unacceptable error-triggering inputs of a given floating-
point pro-gram, the biggest challenge is that how to efficiently solve it in the case that the program
has n-tuple input and m-tuple output.

Figure 5. Process of unacceptable error-triggering inputs detection for one program of one

parameter.

For a program of n-tuple input, the naive way to error detection is to equally split every
dimension of n-tuple input interval into subdivisions whose width are less than a given tolerance.
And we compute the error triggered by the program for each possible combination, then return all
the subdivisions’ combination that cause unacceptable error.

It is obvious that the complexity of this method is pretty high. Next we present algorithm
BBED(branch and bound for error detection) applying branch and bound method that can greatly
reduce the required computations by discarding unsatisfactory branches.

Consider a program of one parameter 1(X)F and given tolerance ε and δ , we first divide
1X into (1)

1X , (2)
1X , where (1) (2)

1 1 1(X) (X) 1/ 2 (X)ω ω ω= = , and replace 1X by (1)
1X and (2)

1X respectively, and
then run the program to check if error is greater thanδ . If the error δ≤ , the subdivision will be
abandoned. Otherwise, we continue to divide the subdivision until 1(X)ω ε≤ andechocurrent
subdivision as an unacceptable error-triggering input. Fig. 5 depicts the process of unacceptable
error-triggering inputs detection for one program of one parameter.

Algorithm BBED is easily generalized to programs of multiple parameters. Suppose given a
program (X)Y F= , where X and Y are interval vectors and n interval-valued inputs Xi , 1, ,i n=  , we
are aimed at seeking all candidate unacceptable error-triggering inputs x Xk k⊂ , where xk is an
interval vector, 0k ≥ . And the algorithm is as follows.

no

1F(X)

(1)
1F(X) (2)

1F(X)

no
yes yes

no no

Stop

error δ>

1(X)ω ε<

error-triggering
input

yes

error δ>

1(X)ω ε<

error-triggering
input

yes

1210

Algorithm BBED. This algorithm echoes all candidate unacceptable error-triggering
inputs x X , 0k k k⊂ ≥ ,stored in � , where ()length n=� .

(1)Initially, the list 1{X , ,X }nL =  , � is empty;
(2)Let 0 [1]X L← , bisect 0X such that

(1) (2)
0 0 0X XX =  ;

(3) For : 1,2i = do
(a) (i)

0 0X X← ;
 (b) IF , then

move 0X at the tail of L ;
 ELSE
 remove 0X from L and place it into � ;
END IF

(c) execute the program (X)Y F= ;
(d) IF (Y,X)error δ> , then

 IF L is not empty THEN
return to step (2);

 ELSE
 RETURN with list � ;
 END IF
END IF

END For
Remark. Step (2) means we bisect 0X into two intervals,

(1)
0 0 0X [X , (X)]m= ,
(2)

0 0 0X [(X),X]m= .
In step (b), ε represents the condition if the input will be divided into a smaller one. In step (d),

(Y,X) (Y) / (X)error ω ω= ,andδ is a tolerance presenting error accumulating ratio.
In the worst case, the complexity of Algorithm BBED is (2)n cO + ,where c is some constant depend

on the initial of Xi , 1, ,i n=  and ε .

EXPERIMENTS
Our experiments are conducted on the machine running Windows 7 with Intel i7-3770 2-Core

3.40GHz, 8GB RAM. And SpaceAED run on Boost 1.50, JDK 1.7.0 and MinGW 2.21. We choose
to test functions about matrix arithmetic and special functions of GSL(GNU Scientific Library),
whose version is gsl-1.14. We analyze all the functions about matrix arithmetic and most of special
functions, even though they highly depend on each other. GSL is a mature, extensively-used, well-
tested and well-maintained scientific computation library[14]. It is the reason that we carry on
experiments on it. Detecting for unacceptable error-triggering inputs of the functions in GSL is both
challenging and important. In spite of challenges, we evaluate SpaceAED over 100 functions in
GSL.

We will take three examples to demonstrate how SpaceAED works out in practice.
C. Example 1

The program for matrix inversion is made up of 20 functions from GSL. Because there is no
direct function used for matrix inversion, we synthesizegsl_matrix_inverse calling
gsl_linalg_LU_decomp and gsl_linalg_LU_invert, which are defined in gsl/linalg/lu.c.Fig. 6 depicts
implementation of function gsl_matrix_inverse.

1211

Figure 6. Implementation of function gsl_matrix_inverse.

mat means a pointer to source matrix as the input, and invm means a pointer to inverse matrix as the
output.

Here, we initiate mat like this,
[1,1.2] [2,2.2] [1.8,2]

* [3,3.2] [4.3,4.5] [1,1.2]
[4,4.2] [6.4,6.6] [2.9,3.1]

mat
 
 =  
 
 

,

and set 610δ = and 0.05ε = .Run on this program, SpaceAED takes about 332.07s and returns
4375283 unacceptable error-triggering inputs. In order to verify the correctness of results, we
randomly select 10 inputs from the results above and take each of them as the input to compute its
condition number, which is used as an index of relative error of the program. Table I shows
condition number of the matrix with 10 unacceptable error-triggering inputs.

TABLE I. CONDITION NUMBER OF THE MATRIX WITH 10 UN-ACCEPTABLE ERROR-TRIGGERING INPUTS

Ex. Unacceptable Error-triggering
Input

Condition Number

1

1.02 2.01 1.82
3.03 4.31 1.023
4.04 6.41 2.92

 
 
 
  

492.1753

2

1.02 2.02 1.81
3.04 4.33 1.01
4.04 6.47 2.98

 
 
 
  

460.1818

3

1.085 2.15 1.835
3.04 4.33 1.01
4.04 6.47 2.98

 
 
 
  

432.9247

4

1.0715 2.05 1.889
3.114 4.4 1.189
4.16 6.48 3.1

 
 
 
  

643.9857

5

1.06 2.115 1.82
3.03 4.38 1.03
4.04 6.53 3.03

 
 
 
  

1404.5

6

1.14 2.14 1.935
3.07 4.375 1.08
4.14 6.46 3.06

 
 
 
  

1683.6

7

1.115 2.06 1.912
3.032 4.45 1.057
4.12 6.49 2.949

 
 
 
  

1525.6

8

1.175 2.12 1.912
3.014 4.45 1.017
4.119 6.58 3.05

 
 
 
  

503.1505

9

1.04 2.13 1.96
3.11 4.47 1.05
4.18 6.57 2.923

 
 
 
  

1050.3

1.void gsl_matrix_inverse(gsl_matrix *mat,
2.gsl_matrix *invm){
3. gsl_permutation *p = gsl_permutation_alloc(
4. mat->size1);
5.int sign = 0;
6. gsl_linalg_LU_decomp(mat, p, &sign);
7. gsl_linalg_LU_invert(mat, p, invm);
8. gsl_permutation_free(p);
9. }

1212

10

1.06 2.18 1.98
3.17 4.39 1.08
4.19 6.46 2.935

 
 
 
  

6264.8

D. Example 2
Consider the program for computing the eigenvalues and eigenvectors of matrix, void

gsl_eigen_symmv(gsl_matrix* mat, gsl_vector* eval, gsl_matrix* evec,gsl_eigen_symmv
workspace* w) is defined in gsl/eigen/symmv.c. Its implementation depends on 30 other functions
in GSL. Here mat means a pointer to source matrix as the input, eval respresents the eigenvalues of
mat and evec denotes the eigenvectors of mat as the output.

Here, we initiate mat like this,
[1,1.2] [0.1,0.2] [1,1.2]

* [0.1,0.2] [4.3,4.5] [1,1.2]
[1,1.2] [1,1.2] [2.9,3.1]

mat
 
 =  
 
 

,

and set 510δ = and 0.05ε = . Run on this program, SpaceAED takes 213.82s and reports 1255821
unacceptable error-triggering inputs.

In order to verify the correctness of results, we randomly pick a point a from the results above
and another point a near a, then compute 2 2

() () /f a f a a a− −  as the relative error of this program.
TableII shows relative error of gsl_eigen_symmv on point a.

TABLE II. RELATIVE ERROR OF GSL_EIGEN_SYMMV ON POINT a

Point
a

Point
a

Relative
Error

1.026 0.126 1.045
0.1512 4.358 1.012
1.01 1.103 3.04

 
 
 
  

 1.0261 0.1265 1.0459
0.15122 4.3583 1.012
1.011 1.103 3.044

 
 
 
  

139.52

1.076 0.126 1.01
0.114 4.451 1.032
1.11 1.180 3.084

 
 
 
  

 1.07601 0.12601 1.0101
0.11401 4.45102 1.03201
1.11002 1.1801 3.08401

 
 
 
  

120.59

1.175 0.1 1.175
0.15 4.35 1.075
1.05 1.0 3.01

 
 
 
  

 1.17501 0.1004 1.1751
0.1504 4.3501 1.0753
1.0508 1.00001 3.01005

 
 
 
  

86.346

1.183 0.139 1.163
0.163 4.33 1.18
1.029 1.084 2.91

 
 
 
  

 1.1831 0.1391 1.1631
0.1631 4.3301 1.1801
1.0291 1.0841 2.9101

 
 
 
  

99.074

1.11 0.140 1.17
0.12 4.43 1.18
1.13 1.095 2.913

 
 
 
  

 1.1101 0.1401 1.1701
0.1201 4.4301 1.1801
1.1301 1.09501 2.9131

 
 
 
  

114.197

TABLE III. RELATIVE ERROR OF GSL_SF_POW_INT ON POINT a

Ex. Point
a

Point
a

Relative Error

1 2.9375 2.93751 2.13739e+048
2 2.97559 2.97562 7.65513e+048
3 3.14555 3.14557 1.87111e+051
4 3.21289 3.21290 1.5232e+052
5 3.22568 3.22171 1.99691e+052
6 3.74902 3.74912 6.58312e+058
7 4.00391 4.00395 4.42753e+061
8 4.30273 4.30293 5.51652e+064

1213

E. Example 3
Consider a function for calculating integer powers in GSL, double gsl_sf_pow_int (double x, int

n), it is defined in gls/specfunc/pow_int.c and used to compute the power nx for an integer n.
Here we initiate x=[2,5] and n=20, and then set 1010δ = and 0.005ε = .Run on this function,

SpaceAED takes 0.026s and echoes 704 unacceptable error-triggering inputs.
In order to verify that each of those inputs do trigger an unacceptable error, we randomly pick a

point a from the results above and another point a near a, and compute as () ()() () /f a f a a a− −  the
relative error of this function,where f represents function gsl_sf_pow_int. Table III shows the
relative error of gsl_sf_pow_int on point a.

CONCLUSION AND FUTURE WORK
In this paper, we have presented the design and implementation of SpaceAED, a tool for

automatically detecting all of inputs that trigger unacceptable error. We have also given our
extensive evaluation of SpaceAED over 100 GSL functions about Matrix, Vector, Special Function.
Experiment results show that SpaceAED is practical, primarily enabled by our combination of
program rewriting and technique for efficiently error detection via branch and bound method. Our
future work is to releaseSpace-AED open to the public and benefit numerical software developers
and users.

Acknowledgment
This work was supported by NSFC(grant 91118007) and Innovation Program of Shanghai

Municipal Education Commission (grant 14ZZ046).

References
[1] Wikipedia. Ariane 5 flight 501. http://en.wikipedia.org/wiki/Ariane_5

_Flight_501.
[2] CNN. Toyota: Software to blame for Prius brake

problems.http://www.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complacomp/index.htm
l.

[3] P.H.Sterbenz, Floating-point Computation.Englewood Cliff, New Jersey: Prentice-Hall,1974, pp.
1-50.

[4] R. E. Moore, R.B. Kearfottand M.J. Cloud, Introduction to Interval Analysis. SIAM, 2009, pp.
5-50.

[5] B. W. Kernighan andD. M. Ritchie, The C Programming Language , 2nd ed..Englewood Cliff,
New Jersey: Prentice Hall, 1996, pp. 100-120.

[6] J. M. Muller, N. Brisebarre, F. D. Dinechin, et al. Handbook of Floating-Point
Arithmetic.Boston: Birkhäuser Basel, 2010.

[7] J. Clausen, “Branch and Bound Algorithms—Principles and Examples,”Parallel Computing in
Optimization, March 1999, pp. 239-267.

[8] J. Levine, flex & bison. Sebastopol, CA: O'Reilly Media, 2009.
[9] Boost C++ Libraries. Boost Interval Arithmetic Library.

http://www.boost.org/doc/libs/1_55_0/libs/numeric/interval/doc/interval.html.
[10] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for feature subset

selection,”IEEE Transactions on Computers, Vol. C-26, Sept. 1977, pp. 917-922.
[11] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for computing k-nearest

neighbors,”IEEE Transactions on Computers, Vol. 24, July 1975, pp. 750-753.
[12] R. E.Moore,Interval Analysis.Englewood Cliff, New Jersey: Prentice-Hall, 1966, pp. 50-120.

1214

[13] E. Goubault and S. Putot,“Static analysis of numeric algorithms,” Proc. 13thInternational
Static Analysis Symposium (SAS 2006), Springer,Aug. 2006, pp. 18-34.

[14] FSF. GSL: GNU scientific library. http://www.gnu.org/s/g-sl/.
[15] M.Martel,“Propagation of roundoff errors in finite precision computations: a semantics

approach,”Proc.11th European Symposi-
um on Programming (ESOP2002), Springer, April 2002, pp. 194-208.

APPENDIX
By an interval, we adoptXdenoting it, and the left and right endpoints of an intervalXwill be denoted
by X and X respectively. Thus,

[,]X X X= .
The basic arithmetic operations between intervals are, for [,]X X and [,]Y Y ,

[,] [,] [,],X X Y Y X Y X Y+ = + +
[,] [,] [,],X X Y Y X Y X Y− = − −

[,] [,] [min(, , ,),X X Y Y XY XY XY XY⋅ =
max(, , ,)],XY XY XY XY

[,] / [,] [min(/ , / , / , /),X X Y Y X Y X Y X Y X Y=
max(/ , / , / , /)], when 0 [,].X Y X Y X Y X Y Y Y∉

The width of an intervalX is denoted by
()X X Xω = − .

The midpoint of an interval Xis denoted by
() 1/ 2()m X X X= + .

By an n-dimensionalinterval vector, we denote it by an n-tuple of intervals
1(X , ,X)n ,

and we will also adopt X denoting interval vectors.
The width of an interval vector 1X (X , ,X)n=  is the largest of the widths of all its component
intervals,

() max ()ii
X Xω ω= .

Interval arithmetic can be extensively used in scenario where no exact numerical values can be
stated. It is often used to handle error analysis, namely to keep track of rounding errors arising from
each calculation because it uses an interval that contains the true result. And rounding error brought
by the cur-rent calculation is given by[12],

: aerror b= − for [a,]b .

1215

	A. Program Rewriting
	1) Abstract Syntax Tree Generation
	a) Lexical analysis
	b) Syntax analysis
	c) Semantic analysis

	2) Code Transformation

	B. Error Detection
	C. Example 1
	D. Example 2
	E. Example 3
	APPENDIX

