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Abstract. It is well-known that writing an error-free floating-point program is very difficult. Thus, 
detecting unacceptable errors of a floating-point program is important. In this paper, we develop a 
system named SpaceAED. The main function of this system is to automatically detect unacceptable 
errors of a floating-point program written in C programming language. The key insight of this work 
is to use interval arithmetic in conjunction with branch and bound technique. The implementation of 
SpaceAED is to rewrite a floating-point program to one that can run on interval arithmetic, and then 
use branch and bound technique to find all inputs that can trigger unacceptable errors. We choose a 
great many of functions in GNU Scientific Library (GSL) to test SpaceAED, including matrix 
computations and evaluation of special functions etc. Numerical results show that SpaceAED is 
available for accurately detecting unacceptable error-triggering inputs of numerical functions. 

Introduction 
On June 4, 1996, Ariane 5 rocket, launched by European Space Agency, ended in failure because 

of an error that converts data from a 64-bit floating point number to a 16-bit signed integer value to 
overflow[1]. On February 3, 2010, Toyota recalled vehicles because of anti-lock brake software [2]. 
Numeric program, which manipulates floating-point arithmetic, plays a critical role in many fields of 
national defense, transportation, finance. Clearly, nowadays our people increasingly rely on numeric 
program. Floating-point numbers are the finite precision encoding of real numbers, the result of their 
operations are not exactly representable but rounded[3]. Rounding errors, if it manages to 
accumulate sufficiently, may probably destroy a numeric result[4, 15]. C language is the most widely 
used programming language in industry such as in aerospace engineering, due to a combination of 
characteristics such as code portability, efficiency, low runtime system resource demand and so 
on[5]. Therefore, research on error analysis for numeric program written in C language has important 
scientific value and practicalsignificance. 

Theoretical analysis on floating-point arithmetic has been extensively studied. Jean-Michel 
Muller systematically presents basic concepts of floating-point arithmetic including 
formats, exceptions, rounding modes etc.[6]. Ramon E. Moore presents basics of interval arithmetic, 
which is the most common used method to keep track of and analyze rounding errors arising from 
each floating-point operation [4]. However, little work has been carried on error analysis of floating-
point code. In this paper, we consider a problem that how to detect all of inputs triggering 
unacceptable error specified by users for a given numeric program, which is a challenging problem. 

Based on interval arithmetic, we propose an algorithm using branch and bound method[7] to 
efficiently detect all the unacceptable error-triggering inputs of a given floating-point program. To 
this end, we rewrite a numeric program to one that can be run on interval arithmetic. Then we run the 
rewritten program with the given inputs. When it terminates, the rewritten program will report all 
unacceptable error-triggering inputs. 
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Our approach, which we have called SpaceAED, automatically detects all unacceptable error-
triggering inputs. Program that run on an arbitrary pair of those inputs will certainly produce an 
unacceptable error. When SpaceAED finds all the unacceptable error-triggering inputs, developers 
are able to exactly use a program without triggering unacceptable error. 

To realize SpaceAED, we first use Flex and Bison[8] to generate abstract syntax tree(AST) by 
building C language syntax analyzer. Then we rewrite numeric program written in C language to the 
form that can run on Boost Library[9] by traversing AST. Finally we finish the module of detecting 
all the unacceptable error-triggering inputs by using branch and bound method[10,11]. 

Our contributions are as follows. 
•A practical method for detecting unacceptable error based on branch and bound method. 
•A system that can automatically detect all the unacceptable error-triggering inputs and its 

evaluation on the GNU Scientific Library(GSL). 
The paper is organized as follows. Section 2 gives a program drawn from GSL to clarify our 

problem. Section 3 introduces how to implement program rewriting and how to complete error 
detection via branch and bound method. In section 4, we take three examples to demonstrate 
howSpaceAED works out in practice and show the results of experiment. Some concluding remarks 
are made in Section 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  GSL’s implementation of gsl_complex_exp. 

ILLUSTRATIVE EXAMPLE 
In order to clarify our problem, we use a function, gsl_complex_exp(gsl_complex z), drawn from 

the GSL complex functions. And it returns the complex exponential of the complex number z. Fig. 
1gives the GSL’s implement- 
ation of gsl_complex_exp. 

We declare a gsl_complex variable a as input and take a.dat[0]=1.53 and a.dat[1]=2.15. Then we 
declare another gsl_complex variable b as input and take b.dat[0]=1.531 and b.dat[1]=2.151. Here 
we use||f(b)-f(a)||2/||b-a||2to obtain relative error, wherefmeans gsl_complex_exp and ||||2denotes 2-
norm. According to the previous formula, the relative error is 1212.9. However, in the case that 
a.dat[0]= 
10.82,a.dat[1]=12.26,b.dat[0]=10.821 and b.dat[1]=12.261, the relative error is 1.06512e+007. 

Based on the analysis of the two results above, it is obvious that for a given program, the relative 
error at some point is very small while that at another point is very large enough to probably destroy 
a numeric result. Therefore, it is important and necessary to detect all inputs of gsl_complex_ 
exp that can trigger unacceptable error specified by users. 

1. typedef struct{ 
2.double dat[2]; 
3. }gsl_complex; 
4. gsl_complexgsl_complex_exp (gsl_complex a){  
5.    /* z=exp(a) */ 
6. double rho = exp (GSL_REAL (a)); 
7.double theta = GSL_IMAG (a); 
8.gsl_complex z; 
9.  GSL_SET_COMPLEX (&z,  
10.         rho * cos (theta), rho * sin (theta)); 
11.  return z; 
12. } 
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Figure 2.  A region formed byall unacceptable error-triggering inputs. 

Let dat[0] and dat[1] be bounded by interval [13,15]. Run on this function, SpaceAED reports that all 
the inputs on dat[0] and dat[1], which trigger unacceptable error. The shadow area in Fig. 2 is 
formed by all the unacceptable error-triggering inputs on dat[0] and dat[1] and the small shadow 
rectangle represents one unacceptable error-triggering inputs region. 

APPROACH 
Since SpaceAED analyzes programs not functions, the architecture of SpaceAED, which is given 

by Fig. 3, describes two main phases. Phase one automatically rewrites a numeric program written in 
C language into one that can be run on Boost library, which is mature, well-tested, well-maintained 
andprovides support for interval arithmetic[9]. During phase two, SpaceAED runs the rewritten 
program with inputs on interval and reports all the inputs that trigger unacceptable error when it 
terminates. The key challenge in its implementation is how to efficiently detect all those inputs of 
one program, whose input are usually multiple parameters. 

We first describe the implementation of program rewriting of our error detection tool, SpaceAED 
(see Section 3.1) and how we detect all unacceptable error-triggering inputs for a given floating-
point program (see Section 3.2). 
A. Program Rewriting 

In order to transform a numeric program written in C language into a form that can be run on 
Boost library, we design a transformer that takes a numeric program written in C language and 
rewrites its float and double types into intv_float and intv_double respectively, both of which are 
defined in Boost library.Besides rewriting types, it also rewrites floating-point relation expression. 
For instance, x>= y is transformed to x.lower() >=  y.upper() and x<= 0.5 is transformed to x.upper() 
<= 0.5. In addition to previous rewriting rules, it also has another rewriting rule R(C[e])=C[R[e]] in 
global context, where R denotes our transformer, e means an expression or declaration of floating-
point, and C stands for a numeric program context. 

Based on the rewriting rules above and characteristics of C programming language, we will 
implement program rewriting based on abstract syntax tree, which is often used in program analysis 
and program transformation systems[13]. 

1) Abstract Syntax Tree Generation 
Abstract syntax tree is a data structure widely used in compliers and often serves as a tree 

representation of a program. Generating AST takes three steps: lexical analysis, syntax analysis and 
semantic analysis. 

In order to generate abstract syntax tree, we exploit Flex and Bison, which are open source tools 
for building programs that handle structural inputs. Fig. 4 depicts the process of abstract syntax tree 
generation. 
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a) Lexical analysis 
We group characters into lexical units or tokens. It is implemented by using Flex to write lexical 

analysis program lex.l, compiling it into .c file, and executing .c file to decompose the source code 
into tokens. 
 

 
 
 
 
 
 
 

Figure 3.  The architecture of  SpaceAED. 

b) Syntax analysis 
We group tokens into syntactical units, is implemented by using Bison to write syntax analysis 

program parser.y, compiling it to generate .c file and .h file, and executing the .c file and .h file to get 
a parse tree representation of the program. However, the parse tree is not completed and will be 
refined by semantic analysis. 

c) Semantic analysis 
We analyze the parse tree for context-sensitive in-formation concerning variables and other 

objects, which is stored in a symbol table and produce a completed syntax tree containing all the 
information of the structure of the program. 

In this paper, we generate the abstract syntax tree based on object-oriented principle, every node 
in which represents a syntax structure, such as identifier, expression, statement, declaration, 
compound statement, function declaration, function body. 

 
Figure 4.  Process of abstract syntax tree generation. 

2) Code Transformation 
Through the previous process, abstract syntax tree and symbol table have already been generated. 

Then we will implement code transformation by traversing the syntax tree. Here we will exploit 
recursive call technique to traverse syntax tree. The below is our algorithm CTAST(code 
transformation via AST) for transforming code. 

Algorithm CTAST. This algorithm takes a rewriting rule list L and root of a given numeric 
program p, then returns root of rewritten numeric program new_p. 
(1) IF L is not empty THEN 

(a) Set [1]CR L←  and remove the first item from L; 
(b) RewriteFunc(p) 

IF(p is NULL) THEN 
RETURN; 

ELSE 
IF(semantic of p conform to CR) 

1.new_p:= rewrite(p); 
2.RETURN new_p; 

 ElSE  
For(from left to right traversing each subNode SN of p) 

RewriteFunc( SN); 
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END For 
  END IF 
 END IF 
END IF 

Remark. In step(a), CR means current rewriting rule. In step(b), subroutine rewrite is an concrete 
function for how to transform code based on CR in details. 
B. Error Detection 

For the problem that how to detect all unacceptable error-triggering inputs of a given floating-
point pro-gram, the biggest challenge is that how to efficiently solve it in the case that the program 
has n-tuple input and m-tuple output.  
 

 
Figure 5.  Process of unacceptable error-triggering inputs detection for one program of one 

parameter. 

For a program of n-tuple input, the naive way to error detection is to equally split every 
dimension of n-tuple input interval into subdivisions whose width are less than a given tolerance. 
And we compute the error triggered by the program for each possible combination, then return all 
the subdivisions’ combination that cause unacceptable error.  

It is obvious that the complexity of this method is pretty high. Next we present algorithm 
BBED(branch and bound for error detection) applying branch and bound method that can greatly 
reduce the required computations by discarding unsatisfactory branches. 

Consider a program of one parameter 1(X )F and given tolerance ε  and δ , we first divide 
1X into (1)

1X , (2)
1X , where (1) (2)

1 1 1(X ) (X ) 1/ 2 (X )ω ω ω= = , and replace 1X by (1)
1X and (2)

1X respectively, and 
then run the program to check if error is greater thanδ . If the error δ≤ , the subdivision will be 
abandoned. Otherwise, we continue to divide the subdivision until 1(X )ω ε≤ andechocurrent 
subdivision as an unacceptable error-triggering input. Fig. 5 depicts the process of unacceptable 
error-triggering inputs detection for one program of one parameter. 

Algorithm BBED is easily generalized to programs of multiple parameters. Suppose given a 
program (X)Y F= , where X and Y are interval vectors and n interval-valued inputs Xi , 1, ,i n=  , we 
are aimed at seeking all candidate unacceptable error-triggering inputs x Xk k⊂ , where xk is an 
interval vector, 0k ≥ . And the algorithm is as follows. 
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Algorithm BBED. This algorithm echoes all candidate unacceptable error-triggering 
inputs x X , 0k k k⊂ ≥ ,stored in � , where ( )length n=� . 

(1)Initially, the list 1{X , ,X }nL =  , � is empty; 
(2)Let 0 [1]X L← , bisect 0X such that 

(1) (2)
0 0 0X XX =  ; 

(3) For : 1,2i = do 
(a) (i)

0 0X X← ; 
 (b) IF , then 

move 0X at the tail of L ; 
  ELSE 
  remove 0X from L and place it into � ; 
END IF 

(c) execute the program (X)Y F= ; 
(d) IF (Y,X)error δ> , then 

   IF L  is not empty THEN  
return to step (2); 

  ELSE 
   RETURN with list � ; 
   END IF 
END IF 

END For 
Remark. Step (2) means we bisect 0X into two intervals, 

(1)
0 0 0X [X , (X )]m=  , 
(2)

0 0 0X [ (X ),X ]m=  . 
In step (b), ε represents the condition if the input will be divided into a smaller one. In step (d), 

(Y,X) (Y) / (X)error ω ω= ,andδ is a tolerance presenting error accumulating ratio. 
In the worst case, the complexity of Algorithm BBED is (2 )n cO + ,where c is some constant depend 

on the initial of Xi , 1, ,i n=   and ε . 

EXPERIMENTS 
Our experiments are conducted on the machine running Windows 7 with Intel i7-3770 2-Core 

3.40GHz, 8GB RAM. And SpaceAED run on Boost 1.50, JDK 1.7.0 and MinGW 2.21. We choose 
to test functions about matrix arithmetic and special functions of GSL(GNU Scientific Library), 
whose version is gsl-1.14. We analyze all the functions about matrix arithmetic and most of special 
functions, even though they highly depend on each other. GSL is a mature, extensively-used, well-
tested and well-maintained scientific computation library[14]. It is the reason that we carry on 
experiments on it. Detecting for unacceptable error-triggering inputs of the functions in GSL is both 
challenging and important. In spite of challenges, we evaluate SpaceAED over 100 functions in 
GSL. 

We will take three examples to demonstrate how SpaceAED works out in practice. 
C. Example 1 

The program for matrix inversion is made up of 20 functions from GSL. Because there is no 
direct function used for matrix inversion, we synthesizegsl_matrix_inverse calling 
gsl_linalg_LU_decomp and gsl_linalg_LU_invert, which are defined in gsl/linalg/lu.c.Fig. 6 depicts 
implementation of function gsl_matrix_inverse. 
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Figure 6.  Implementation of function gsl_matrix_inverse. 

mat means a pointer to source matrix as the input, and invm means a pointer to inverse matrix as the 
output. 

Here, we initiate mat like this, 
[1,1.2] [2,2.2] [1.8,2]

* [3,3.2] [4.3,4.5] [1,1.2]
[4,4.2] [6.4,6.6] [2.9,3.1]

mat
 
 =  
 
 

, 

and set 610δ = and 0.05ε = .Run on this program, SpaceAED takes about 332.07s and returns 
4375283 unacceptable error-triggering inputs. In order to verify the correctness of results, we 
randomly select 10 inputs from the results above and take each of them as the input to compute its 
condition number, which is used as an index of relative error of the program. Table I shows 
condition number of the matrix with 10 unacceptable error-triggering inputs. 

TABLE I.  CONDITION NUMBER OF THE MATRIX WITH 10 UN-ACCEPTABLE ERROR-TRIGGERING INPUTS 

Ex. Unacceptable Error-triggering 
Input 

Condition Number 

 
1 

1.02 2.01 1.82
3.03 4.31 1.023
4.04 6.41 2.92

 
 
 
  

  
492.1753 

 
2 

1.02 2.02 1.81
3.04 4.33 1.01
4.04 6.47 2.98

 
 
 
  

  
460.1818 

 
3 

1.085 2.15 1.835
3.04 4.33 1.01
4.04 6.47 2.98

 
 
 
  

  
432.9247 

 
4 

1.0715 2.05 1.889
3.114 4.4 1.189
4.16 6.48 3.1

 
 
 
  

  
643.9857 

 
5 

1.06 2.115 1.82
3.03 4.38 1.03
4.04 6.53 3.03

 
 
 
  

  
1404.5 

 
6 

1.14 2.14 1.935
3.07 4.375 1.08
4.14 6.46 3.06

 
 
 
  

  
1683.6 

 
7 

1.115 2.06 1.912
3.032 4.45 1.057
4.12 6.49 2.949

 
 
 
  

  
1525.6 

 
8 

1.175 2.12 1.912
3.014 4.45 1.017
4.119 6.58 3.05

 
 
 
  

  
503.1505 

 
9 

1.04 2.13 1.96
3.11 4.47 1.05
4.18 6.57 2.923

 
 
 
  

  
1050.3 

1.void gsl_matrix_inverse(gsl_matrix *mat,  
2.gsl_matrix *invm){ 
3.  gsl_permutation *p = gsl_permutation_alloc( 
4.                                 mat->size1); 
5.int sign = 0; 
6.  gsl_linalg_LU_decomp(mat, p, &sign); 
7.  gsl_linalg_LU_invert(mat, p, invm); 
8.  gsl_permutation_free(p); 
9. } 
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10 

1.06 2.18 1.98
3.17 4.39 1.08
4.19 6.46 2.935

 
 
 
  

  
6264.8 

D. Example 2 
Consider the program for computing the eigenvalues and eigenvectors of matrix, void 

gsl_eigen_symmv(gsl_matrix* mat, gsl_vector* eval, gsl_matrix* evec,gsl_eigen_symmv 
workspace* w) is defined in gsl/eigen/symmv.c. Its implementation depends on 30 other functions 
in GSL. Here mat means a pointer to source matrix as the input, eval respresents the eigenvalues of 
mat and evec denotes the eigenvectors of mat as the output. 

Here, we initiate mat like this, 
[1,1.2] [0.1,0.2] [1,1.2]

* [0.1,0.2] [4.3,4.5] [1,1.2]
[1,1.2] [1,1.2] [2.9,3.1]

mat
 
 =  
 
 

, 

and set 510δ = and 0.05ε = . Run on this program, SpaceAED takes 213.82s and reports 1255821 
unacceptable error-triggering inputs. 

In order to verify the correctness of results, we randomly pick a point a from the results above 
and another point a near a, then compute 2 2

( ) ( ) /f a f a a a− −  as the relative error of this program. 
TableII shows relative error of gsl_eigen_symmv on point a. 

TABLE II.  RELATIVE ERROR OF GSL_EIGEN_SYMMV ON POINT a 

Point 
a  

Point 
a  

Relative 
Error 

1.026 0.126 1.045
0.1512 4.358 1.012
1.01 1.103 3.04

 
 
 
  

 1.0261 0.1265 1.0459
0.15122 4.3583 1.012
1.011 1.103 3.044

 
 
 
  

  
139.52 

1.076 0.126 1.01
0.114 4.451 1.032
1.11 1.180 3.084

 
 
 
  

 1.07601 0.12601 1.0101
0.11401 4.45102 1.03201
1.11002 1.1801 3.08401

 
 
 
  

  
120.59 

1.175 0.1 1.175
0.15 4.35 1.075
1.05 1.0 3.01

 
 
 
  

 1.17501 0.1004 1.1751
0.1504 4.3501 1.0753
1.0508 1.00001 3.01005

 
 
 
  

  
86.346 

1.183 0.139 1.163
0.163 4.33 1.18
1.029 1.084 2.91

 
 
 
  

 1.1831 0.1391 1.1631
0.1631 4.3301 1.1801
1.0291 1.0841 2.9101

 
 
 
  

  
99.074 

1.11 0.140 1.17
0.12 4.43 1.18
1.13 1.095 2.913

 
 
 
  

 1.1101 0.1401 1.1701
0.1201 4.4301 1.1801
1.1301 1.09501 2.9131

 
 
 
  

  
114.197 

TABLE III.  RELATIVE ERROR OF GSL_SF_POW_INT ON POINT a 

Ex. Point 
a  

Point 
a  

Relative Error 

1 2.9375 2.93751 2.13739e+048 
2 2.97559 2.97562 7.65513e+048 
3 3.14555 3.14557 1.87111e+051 
4 3.21289 3.21290 1.5232e+052 
5 3.22568 3.22171 1.99691e+052 
6 3.74902 3.74912 6.58312e+058 
7 4.00391 4.00395 4.42753e+061 
8 4.30273 4.30293 5.51652e+064 
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E. Example 3 
Consider a function for calculating integer powers in GSL, double gsl_sf_pow_int (double x, int 

n), it is defined in gls/specfunc/pow_int.c and used to compute the power nx  for an integer n. 
Here we initiate x=[2,5] and n=20, and then set 1010δ =  and 0.005ε = .Run on this function, 

SpaceAED takes 0.026s and echoes 704 unacceptable error-triggering inputs. 
In order to verify that each of those inputs do trigger an unacceptable error, we randomly pick a 

point a from the results above and another point a near a, and compute as ( ) ( )( ) ( ) /f a f a a a− −  the 
relative error of this function,where f represents function gsl_sf_pow_int. Table III shows the 
relative error of gsl_sf_pow_int on point a. 

CONCLUSION AND FUTURE WORK 
In this paper, we have presented the design and implementation of SpaceAED, a tool for 

automatically detecting all of inputs that trigger unacceptable error. We have also given our 
extensive evaluation of SpaceAED over 100 GSL functions about Matrix, Vector, Special Function. 
Experiment results show that SpaceAED is practical, primarily enabled by our combination of 
program rewriting and technique for efficiently error detection via branch and bound method. Our 
future work is to releaseSpace-AED open to the public and benefit numerical software developers 
and users. 
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APPENDIX 
By an interval, we adoptXdenoting it, and the left and right endpoints of an intervalXwill be denoted 
by X and X respectively. Thus, 

[ , ]X X X= . 
The basic arithmetic operations between intervals are, for [ , ]X X and [ , ]Y Y , 

[ , ] [ , ] [ , ],X X Y Y X Y X Y+ = + +  
[ , ] [ , ] [ , ],X X Y Y X Y X Y− = − −  

[ , ] [ , ] [min( , , , ),X X Y Y XY XY XY XY⋅ =  
max( , , , )],XY XY XY XY  

[ , ] / [ , ] [min( / , / , / , / ),X X Y Y X Y X Y X Y X Y=  
max( / , / , / , / )], when 0 [ , ].X Y X Y X Y X Y Y Y∉  

The width of an intervalX is denoted by 
( )X X Xω = − . 

The midpoint of an interval Xis denoted by 
( ) 1/ 2( )m X X X= + . 

By an n-dimensionalinterval vector, we denote it by an n-tuple of intervals 
1(X , ,X )n , 

and we will also adopt X denoting interval vectors. 
The width of an interval vector 1X (X , ,X )n=  is the largest of the widths of all its component 
intervals, 

( ) max ( )ii
X Xω ω= . 

Interval arithmetic can be extensively used in scenario where no exact numerical values can be 
stated. It is often used to handle error analysis, namely to keep track of rounding errors arising from 
each calculation because it uses an interval that contains the true result. And rounding error brought 
by the cur-rent calculation is given by[12], 

: aerror b= −  for [a, ]b . 
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