
Translation Style Semantics and Type System of Control Capturing
Shohei Matsumoto and Shin-ya Nishizaki

Department of Computer Science,Tokyo Institute of Technology,Tokyo, Japan
nisizaki@cs.titech.ac.jp

Keywords: component; programming language theory; functional programming; type system;
control capturing; non-local jump

Abstract. Many programming languages provides non-local exit. In C language, it is implemented
by setjump and longjump functions in its standard library. In Java, a try-catch-finally statement is
equipped as non-local exit with control capturing. The try-catch-finally mechanism can be
categorized into two parts: global jump and control capturing. The non-local jump has been studied
well for a long time by many researchers. On the other hand, control capturing has not yet been
researched well enough. In this paper, we propose a lambda calculus with non-local jump and
control capturing and its operational semantics based on small-step transition. We provide
continuation-passing style translation of the calculus into the usual lambda calculus. The
continuation-passing style translation is known as a translation style semantics of a control structure
such as a non-local jump or first-class continuation. We extend the continuation passing style
translation in order to formalize the control capturing in the framework of a functional
programming language paradigm. We develop a type system for the calculus with control capturing
and show conformity of the typed version of the CPS translation with the type system of the
calculus.

Introduction
We begin this paper with several related backgrounds.

A. Continuation and Translation Style Semantics
Continuation represents the rest of computation at the point of time of executing a program. In

actual implementations of programming languages, the current continuation corresponds to a
memory image of a control stack. We have a programming style called the continuation-passing style,
in which each function takes a continuation explicitly as one of the arguments. In programming
language Scheme[1], a factorial function is described as follows in the non-continuation-passing
style.

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (- n 1)))))
In the continuation-passing style, we can write the factorial function as follows.

(define (fact-cps n k)
 (if (= n 0) (k 1)
 (fact-cps (- n 1)
 (lambda (i) (* n (k i))))))
 (define (factorial n)
(fact-cps n (lambda (j) j)))
As seen in this example, the continuation-passing style enables us to rewrite a recursively-defined

function as a tail-recursive one. In lambda calculus, continuation-passing style translation [2] is

International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015)

© 2015. The authors - Published by Atlantis Press 1271

known as a method for enforcing an evaluation strategy on evaluation. The following is a
continuation-passing style translation for a call-by-value evaluation strategy [3].

This translation preserves the meaning of an expression with respect to the call-by-value

evaluation, that is,

The continuation-passing style translation respects the simple type system of the lambda calculus.

If you define a translation Φ[| α |] of a type A of values as

where ¬A is defined as (A → ϕ) → ϕ for a fixed type ϕ called a top-level type [4][5], a

translation [| A |] of a type A of terms is defined as

We have a theorem for the CPS and its type translation:

If a term M is of type A, then its CPS-translation result [| M |] is of type [| A |].

The Curry-Howard isomorphism is known as correspondence between the intuitionistic logic and

the programming language. From the Curry-Howard isomorphism, the typed lambda calculus with
first-class continuations corresponds to the classical logic [4] [5] [6] and the typed lambda calculus
with non-local jump corresponds to the intuitionistic logic [7].

B. Global Exit and Control Capturing

A non-local jump leap-frogs the flow of execution over the current context and resumes at another
control point pre-declared in advance. In Common Lisp [8], catch and throw forms are provided as
dynamic non-local exits.

 (catch 'exit
 (let ((port (open "/tmp/data.csv")))
 (unwind-protect (read-csv port)
 (close port))
 (close port)))

(defun read-csv (file-handle)
...
 (if *error-occurring*
(throw 'exit))
...)

If the current control of the program goes out of normal processing and a file handler is already

open, then the file handler should be closed after exiting. The variable port is bound to a file handler

1272

and the procedure read-csv is assumed to read CSV data from the file. If an error such as malformed
CSV occurs, the control flow jumps out of the read-scv block to the catch point tagged with the exit
tab. As seen in this example, Common Lisp [8] provides a control capturing mechanism with an
unwind-protect form. If there is a non-local jump across the unwind-protect, its second argument
(close port) is evaluated.

C. Purpose of this paper

The purpose of this paper is to study the control capturing mechanism from the viewpoint of the
lambda calculus. We firstly propose a lambda calculus with non-local jump abort and control
capturing unwind-protect. Secondly, we define the operational semantics of the calculus as a call-by-
value reduction using evaluation contexts. Thirdly, we introduce a simple type system for the
calculus. Fourthly, we give a continuation-passing style translation of the calculus into the usual
lambda calculus, extending the existing continuation passing style translation for the lambda calculus
based on call-by-value evaluation. We also mention that the type system respects the CPS translation.

Lambda Calculus with Control Capturing
In this section, we define a lambda calculus with control capturing, λuw. The calculus λuw is an

extension of the lambda calculus created by adding a global exit construct \abort and a control
capturing construct unwind-protect.

In advance of the definition of values and terms, we are assumed to be given a countably-infinite
set of variables. Elements of the set are represented by the symbols x,y,z,…

Definition 1 (Terms and Values of λuw):
We define terms M and values V,W of λuw inductively by the following grammar.

An expression λx.M is called a lambda abstraction. This is a constructor of a function, which is

represented as (lambda (x) M) in Lisp.

The expression (M N) is called a function application, in which a function M is applied to an

actual parameter N.
We call the expression (abort M) a global exit. This provides a non-local jump mechanism

similar to exit in C language.
The expression (unwind-protect M N) is called an unwind-protect. This captures control flow

jumping globally caused by abort in M and causes N to be executed.
The expression (uwp M V) is an intermediate form in evaluating an unwind-protect expression. In

evaluating (unwind-protect M N), N is firstly evaluated to a unary function V and then M is
evaluated as a part of an expression (uwp M V). This process of evaluation will be defined formally
as an operational semantics later.

Next, we give an operational semantics based on a call-by-value evaluation strategy to the λuw-
calculus. In its preparation, we define an evaluation context, which designates a sub-expression to be
evaluated in the call-by-value evaluation strategy.

Definition 2(Evaluation Contexts of λuw): We define the evaluation contexts E[] of λuw and
those not including unwinding-protect F[], inductively by the grammar.

1273

Fig. 1. Reduction rules of call-by-value reduction

An evaluation context designates the sub-expression to be evaluated in a given expression. In the
above definition, the evaluation contexts are categorized into two groups, evaluation contexts
without the unwinding-mark uwp, F[], and those with uwp, E[].

(F[] M) means that the function part of a function application is evaluated firstly and (V F[])

means that the argument part is evaluated after the evaluation of the function part. Similarly,
(unwind-protect M F[]) means that the second argument is evaluated before evaluation of the

first argument. This syntactical structure makes the call-by-value evaluation possible.
Next, we give an operational semantics to the λuw-calculus as a call-by-value reduction in the

style of Plotkin [3].
Definition 3 (Reduction of λuw): We give a call-by-value reduction to the λuw-calculus, as a

binary relation between terms, by the rules in Figure 3.
Rule E-Beta is beta-reduction under the call-by-value evaluation strategy. In the redex ((λx.M) V),

the actual parameter is restricted to a value by designated as V, which means that the formal
parameter x is bound to the actual parameter after evaluating the parameter and obtaining its result.

If abort is called in evaluating the first parameter of unwind-protect, rule E-Uwp-Abort is
applied: the abort expression (abort V) involves the second parameter W of uwp as (abort (W V)).

If the abort expression (abort V) reaches an evaluation context F[] without an unwinding-mark,
then rule E-Uncaught-Abort is applied, and abort is eliminated and the body v is passed to the
context F[].

If (unwind-protect M N) is found, N is evaluated and then M is evaluated, which is determined
by the evaluation context.

If the second argument is evaluated and implies a term (unwind-protect M V), then the mark
uwp is added and the first argument M starts to be evaluated as (uwp M V).

Example 1 (Reduction Sequence with abort): First, we give an example of a reduction sequence
in which abort appears and unwind-protect does not.

1274

Example 2 (Reduction Sequence with unwind-protect):

Type System for Control Capturing
In this section, we introduce a simple type system into the calculus λuw of control capturing. First,

we define the type of the type system.
Definition 4 (Type of λuw): We define the type of λuw inductively by the following grammar.

Symbol α represents a primitive type, given in advance to the definition. The type (A→B) is

called a function type; its domain type is A and co-domain is B.
 A type assignment, defined in the following, gives information on free variables for the term to

be typed.
Definition 5 (Type Assignment):A type assignment is a mapping of variables to types whose

domain is finite. We write a type assignment as a finite set of pairs as

We use symbols Γ, Δ, … for type assignments.

1275

Fig. 4. Typed Annotated CPS Translation

Definition 6 (Typing Rules): Type judgment Γ ⊢ M : A shows a ternary relation among a type
assignment Γ, a term M, and a type A inductively defined by the following rules.

Fig. 2. CPS Translation

Fig. 3. Colon Translation

1276

In the above rules, ϕ is the type of a given term to be defined, similarly to the one in studies [4] [5]
corresponding to the absurdity ⊥from the viewpoint of the Curry-Howard isomorphism. This type is
often called the top-level type.

 Continuation-Passing Style Translation
Continuation-passing style translation, abbreviated to CPS translation, is a form of mapping

between the lambda calculi. The translation keeps meaning to a given source expression based on an
evaluation strategy such as call-by-value evaluation. The CPS translation consists of translations of
values and terms.

Definition 7 (Continuation-Passing Style Translation): Translations of values Φ[| V |] and terms [|
M |] are defined mutual-recursively by the equations in Fig. 2.

Using this definition of CPS translation, a result of translation includes many redundant beta-
redices. In order to control such redices, we improve the CPS translation as follows.

Definition 8 (Colon Translation):Colon translation (M : K, D) of a term M of λuw and terms K
and D of the lambda calculus is defined inductively by the equations in Fig. 3.

The continuation-passing style translation respects the type system of λuw. Translations of value
types and term types are defined as follows.

Definition 9 (Type Translation): Translations Φ[| A |] and [| A |] of types are defined inductively
by the following equations.

where ϕ is the top-level type.

In the definition of [| A |], (Φ[| A |] →[| ϕ |]) is a type of a continuation and Φ[| ϕ |]→Φ[| ϕ |] a type

of a function of the closing process after control-capturing.
The CPS translation respects the typing that is known from the type annotation in Figure 4, which

gives us the following theorem.
Theorem 1 (Typing of CPS Translation): If

then we have

Conclusion
We have proposed an extended lambda calculus λuw for control capturing of non-local jumps.

The operational semantics of λuw is defined as a call-by-value reduction using evaluation contexts.
We give a simple type system to λuw in Curry's style.
The continuation-passing style translation is given to λuw,
which maps types and terms of λuw to those of the usual simply-typed lambda calculus. We show

that the type system respects the CPS translation.
In this paper, we do not mention non-local jumps with control capturing under imperative

computation, found in practical programming languages such as Java and Scheme. In future, we
should study control capturing under imperative computation. A promising research direction is
extension of Gifford's effect system [10] [11] [12].

1277

The operating semantics defined in this paper is a small-step semantics based on Plotkin's [3]. In
our previous papers [13] [14], we developed an operational semantics using abstract machines. We
can provide another view by studying such an operational semantics.

Acknowledgment
This work was supported by Grants-in-Aid for Scientific Research (C) (24500009).

References
[1] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten, Eds., Revised [6] Report on the
Algorithmic Language Scheme. Cambridge University Press, 2010.
[2] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, “A syntactic theory of sequential
control,” Theoretical Computer Science, vol. 52, no. 3, 1987.
[3] G. Plotkin, “Call-by-name, call-by-value, and the λ-calculus,” Theoretical Computer Science,
vol. 1, pp. 125–159, 1975.
[4] C. Murthy, “An evaluation semantics for classical proofs,” in Proc. 5th IEEE Annual
Symposium on Logic in Computer Science. IEEE Computer Society Press, 1991.
[5] T. G. Griffin, “A formulae-as-types notion of control,” in Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, 1990.
[6] S. Nishizaki, “Programs with continuations and linear logic,” Science of Computer
Programming, vol. 21, no. 2, pp. 95–116, 1994.
[7] H. Nakano, “A constructive formalization of the catch and throw mechanism,” in Proceedings
of the Symposium on Logic in
Computer Science. IEEE Computer Society Press, 1992.
[8] G. L. Steele, Common Lisp the Language, 2nd Edition. Digital Press, 1990
[9] S. Matsumoto and S. Nishizaki, “Continuation-passing style translation of non-local jumps and
control capturing,” in Proceedings of the 2015 Tbilisi International Conference on Computer
Sciences and Applied Mathematics (TICCSAM 2015), 2015, to appear.
[10] J. M. Lucassen and D. K. Gifford, “Polymorphic effect systems,” in Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages, 1988, pp. 47–57.
[11] P. Jouvelot and D. K. Gifford, “Reasoning about continuations with control effects,” in
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation, 1989, pp. 218–226.
[12] P. Wadler and P. Thiemann, “The marriage of effects and monads,” ACM Transactions on
Computation Logic, vol. 4, no. 1, pp. 1–32, 2003.
[13] K. Narita, S. Nishizaki, and T. Mizuno, “A simple abstract machine for functional first-class
continuations,” in Proceedings of the 2010 Tenth International Symposium on Communications and
Information Technologies (ISCIT). IEEE, 2010, pp. 111–114.
[14] K. Narita and S. Nishizaki, “A Parallel Abstract Machine for the RPC Calculus,” in
Proceedings of the International Conference on Informatics Engineering and Information Science –
ICIEIS 2011, ser. Communications in Computer and Information Science, vol. 253. Springer, 2011,
pp. 320–332.

1278

	A. Continuation and Translation Style Semantics
	B. Global Exit and Control Capturing
	C. Purpose of this paper

