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Abstract. Many programming languages provides non-local exit. In C language, it is implemented 
by setjump and longjump functions in its standard library. In Java, a try-catch-finally statement is 
equipped as non-local exit with control capturing. The try-catch-finally mechanism can be 
categorized into two parts: global jump and control capturing. The non-local jump has been studied 
well for a long time by many researchers. On the other hand, control capturing has not yet been 
researched well enough. In this paper, we propose a lambda calculus with non-local jump and 
control capturing and its operational semantics based on small-step transition.  We provide 
continuation-passing style translation of the calculus into the usual lambda calculus. The 
continuation-passing style translation is known as a translation style semantics of a control structure 
such as a non-local jump or first-class continuation. We extend the continuation passing style 
translation in order to formalize the control capturing in the framework of a functional 
programming language paradigm. We develop a type system for the calculus with control capturing 
and show conformity of the typed version of the CPS translation with the type system of the 
calculus. 

Introduction 
We begin this paper with several related backgrounds. 

A. Continuation and Translation Style Semantics 
Continuation represents the rest of computation at the point of time of executing a program. In 

actual implementations of programming languages, the current continuation corresponds to a 
memory image of a control stack. We have a programming style called the continuation-passing style, 
in which each function takes a continuation explicitly as one of the arguments. In programming 
language Scheme[1], a factorial function is described as follows in the non-continuation-passing 
style. 

(define (factorial n) 
  (if (= n 0) 
    1 
    (* n (factorial (- n 1))))) 
In the continuation-passing style, we can write the factorial function as follows. 
 
 
(define (fact-cps n k) 
  (if (= n 0) (k 1) 
    (fact-cps (- n 1)  
        (lambda (i) (* n (k i)))))) 
 (define (factorial n)  
(fact-cps n (lambda (j) j))) 
As seen in this example, the continuation-passing style enables us to rewrite a recursively-defined 

function as a tail-recursive one. In lambda calculus, continuation-passing style translation [2] is 
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known as a method for enforcing an evaluation strategy on evaluation. The following is a 
continuation-passing style translation for a call-by-value evaluation strategy [3]. 

 

 
 
This translation preserves the meaning of an expression with respect to the call-by-value 

evaluation, that is, 
 

 
 
The continuation-passing style translation respects the simple type system of the lambda calculus. 

If you define a translation Φ[| α |] of a type A of values as 
 

 
 
where ¬A is defined as (A → ϕ ) → ϕ for a fixed type ϕ  called a top-level type [4][5], a 

translation [| A |] of a type A of terms is defined as 
 

 
 

We have a theorem for the CPS and its type translation: 
 

If a term M is of type A, then its CPS-translation result  [| M |] is of type [| A |]. 
  
The Curry-Howard isomorphism is known as correspondence between the intuitionistic logic and 

the programming language. From the Curry-Howard isomorphism, the typed lambda calculus with 
first-class continuations corresponds to the classical logic [4] [5] [6] and the typed lambda calculus 
with non-local jump corresponds to the intuitionistic logic [7]. 

 
B. Global Exit and Control Capturing 

A non-local jump leap-frogs the flow of execution over the current context and resumes at another 
control point pre-declared in advance. In Common Lisp [8], catch and throw forms are provided as 
dynamic non-local exits. 

 
 (catch 'exit 
  (let ((port (open "/tmp/data.csv"))) 
    (unwind-protect (read-csv port) 
                    (close port)) 
    (close port))) 
 
 
(defun read-csv (file-handle) 
... 
   (if *error-occurring* 
(throw 'exit)) 
...) 
 
If the current control of the program goes out of normal processing and a file handler is already 

open, then the file handler should be closed after exiting. The variable port is bound to a file handler 
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and the procedure read-csv is assumed to read CSV data from the file. If an error such as malformed 
CSV occurs, the control flow jumps out of the read-scv block to the catch point tagged with the exit 
tab. As seen in this example, Common Lisp [8] provides a control capturing mechanism with an 
unwind-protect form. If there is a non-local jump across the unwind-protect, its second argument 
(close port) is evaluated. 

 
C. Purpose of this paper 

The purpose of this paper is to study the control capturing mechanism from the viewpoint of the 
lambda calculus. We firstly propose a lambda calculus with non-local jump abort and control 
capturing unwind-protect. Secondly, we define the operational semantics of the calculus as a call-by-
value reduction using evaluation contexts. Thirdly, we introduce a simple type system for the 
calculus. Fourthly, we give a continuation-passing style translation of the calculus into the usual 
lambda calculus, extending the existing continuation passing style translation for the lambda calculus 
based on call-by-value evaluation. We also mention that the type system respects the CPS translation. 

Lambda Calculus with Control Capturing 
In this section, we define a lambda calculus with control capturing, λuw. The calculus λuw is an 

extension of the lambda calculus created by adding a global exit construct $\abort$ and a control 
capturing construct unwind-protect. 

In advance of the definition of values and terms, we are assumed to be given a countably-infinite 
set of variables. Elements of the set are represented by the symbols x,y,z,…   

Definition 1 (Terms and Values of  λuw): 
We define terms M and values V,W of λuw inductively by the following grammar. 
 

 
 
An expression λx.M is called a lambda abstraction. This is a constructor of a function, which is 

represented as (lambda (x) M) in Lisp. 
 

 
 
The expression (M N) is called a function application, in which a function M is applied to an 

actual parameter N. 
We call the expression (abort M) a global exit. This provides a non-local jump mechanism 

similar to exit in C language. 
The expression (unwind-protect M N) is called an unwind-protect. This captures control flow 

jumping globally caused by abort in M and causes N to be executed.  
The expression (uwp M V) is an intermediate form in evaluating an unwind-protect expression. In 

evaluating (unwind-protect M N), N is firstly evaluated to a unary function V and then M is 
evaluated as a part of an expression (uwp M V). This process of evaluation will be defined formally 
as an operational semantics later. 

Next, we give an operational semantics based on a call-by-value evaluation strategy to the λuw-
calculus. In its preparation, we define an evaluation context, which designates a sub-expression to be 
evaluated in the call-by-value evaluation strategy. 

Definition 2(Evaluation Contexts of λuw): We define the evaluation contexts E[ ] of λuw and 
those not including unwinding-protect F[ ], inductively by the grammar. 
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Fig. 1. Reduction rules of call-by-value reduction 

An evaluation context designates the sub-expression to be evaluated in a given expression. In the 
above definition, the evaluation contexts are categorized into two groups, evaluation contexts 
without the unwinding-mark uwp, F[ ],  and those with uwp, E[ ]. 

 
(F[ ] M) means that the function part of a function application is evaluated firstly and (V F[ ]) 

means that the argument part is evaluated after the evaluation of the function part. Similarly,  
(unwind-protect M F[ ]) means that the second argument is evaluated before evaluation of the 

first argument. This syntactical structure makes the call-by-value evaluation possible. 
Next, we give an operational semantics to the λuw-calculus as a call-by-value reduction in the 

style of Plotkin [3]. 
Definition 3 (Reduction of λuw): We give a call-by-value reduction to the λuw-calculus, as a 

binary relation between terms, by the rules in Figure 3. 
Rule E-Beta is beta-reduction under the call-by-value evaluation strategy. In the redex ((λx.M) V), 

the actual parameter is restricted to a value by designated as V, which means that the formal 
parameter x is bound to the actual parameter after evaluating the parameter and obtaining its result. 

If abort is called in evaluating the first parameter of unwind-protect, rule E-Uwp-Abort is 
applied: the abort expression (abort V) involves the second parameter W of uwp as (abort (W V)). 

If the abort expression (abort V) reaches an evaluation context F[ ] without an unwinding-mark, 
then rule E-Uncaught-Abort is applied, and abort is eliminated and the body v is passed to the 
context F[ ]. 

If (unwind-protect M N) is found, N is evaluated and then M is evaluated, which is determined 
by the evaluation context. 

If the second argument is evaluated and implies a term (unwind-protect M V), then the mark 
uwp is added and the first argument M starts to be evaluated as (uwp M V). 

Example 1 (Reduction Sequence with abort): First, we give an example of a reduction sequence 
in which abort appears and unwind-protect does not. 
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Example 2 (Reduction Sequence with unwind-protect): 
 

 

Type System for Control Capturing 
In this section, we introduce a simple type system into the calculus λuw of control capturing. First, 

we define the type of the type system. 
Definition 4 (Type of λuw): We define the type of λuw inductively by the following grammar. 
 

 
 
Symbol α represents a primitive type, given in advance to the definition. The type (A→B) is 

called a function type; its domain type is A and co-domain is B. 
  A type assignment, defined in the following, gives information on free variables for the term to 

be typed. 
Definition 5 (Type Assignment):A type assignment is a mapping of variables to types whose 

domain is finite. We write a type assignment as a finite set of pairs as  
 

 
We use symbols Γ, Δ, … for type assignments. 
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Fig. 4. Typed Annotated CPS Translation 
  

Definition 6 (Typing Rules): Type judgment Γ ⊢ M : A  shows a ternary relation among a type 
assignment Γ, a term M, and a type A inductively defined by the following rules. 

 

 
 

 
 

Fig. 2. CPS Translation 
 

Fig. 3. Colon Translation 
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In the above rules, ϕ is the type of a given term to be defined, similarly to the one in studies [4] [5] 
corresponding to the absurdity ⊥from the viewpoint of the Curry-Howard isomorphism. This type is 
often called the top-level type. 

 Continuation-Passing Style Translation 
Continuation-passing style translation, abbreviated to CPS translation, is a form of mapping 

between the lambda calculi. The translation keeps meaning to a given source expression based on an 
evaluation strategy such as call-by-value evaluation. The CPS translation consists of translations of 
values and terms. 

Definition 7 (Continuation-Passing Style Translation): Translations of values Φ[| V |] and terms [| 
M |] are defined mutual-recursively by the equations in Fig. 2. 

Using this definition of CPS translation, a result of translation includes many redundant beta-
redices. In order to control such redices, we improve the CPS translation as follows. 

Definition 8 (Colon Translation):Colon translation (M : K, D) of a term M of λuw and terms K 
and D of the lambda calculus is defined inductively by the equations in Fig. 3. 

The continuation-passing style translation respects the type system of λuw. Translations of value 
types and term types are defined as follows. 

Definition 9 (Type Translation): Translations Φ[| A |] and [| A |] of types are defined inductively 
by the following equations. 

 

 
 

where ϕ is the top-level type. 
 
In the definition of [| A |], (Φ[| A |] →[| ϕ |]) is a type of a continuation and Φ[| ϕ |]→Φ[| ϕ |] a type 

of a function of the closing process after control-capturing. 
The CPS translation respects the typing that is known from the type annotation in Figure 4, which 

gives us the following theorem. 
Theorem 1 (Typing of CPS Translation): If  

 
then we have 
 

 

Conclusion 
We have proposed an extended lambda calculus λuw for control capturing of non-local jumps. 

The operational semantics of λuw is defined as a call-by-value reduction using evaluation contexts. 
We give a simple type system to λuw in Curry's style. 
The continuation-passing style translation is given to λuw,  
which maps types and terms of λuw to those of the usual simply-typed lambda calculus. We show 

that the type system respects the CPS translation. 
In this paper, we do not mention non-local jumps with control capturing under imperative 

computation, found in practical programming languages such as Java and Scheme. In future, we 
should study control capturing under imperative computation. A promising research direction is 
extension of Gifford's effect system [10] [11] [12]. 
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The operating semantics defined in this paper is a small-step semantics based on Plotkin's [3]. In 
our previous papers [13] [14], we developed an operational semantics using abstract machines. We 
can provide another view by studying such an operational semantics.  
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