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Abstract.  The termination problem of a class of simple while program: While (constraints) do 
{updates} end is proven to be decidable by computing periodic orbit of nonlinear updating function 
over the reals. The termination problem of such a program with open constraint domain which have 
periodic orbit on the boundary is also discussed and the corresponding algorithms are given. 

Introduction 
Plenty of computer software has been applied to people’s work and entertainment in modern life. 
Because some bugs in software may cause catastrophic consequences, many software companies 
release bug repairing programs for their products frequently. The problem of program verification has 
been widely concerned by computer scientists (see [1-3]).  Termination analysis as the essential 
problem in program verification is of great significance and extremely difficult. 
In general, the classical approach for checking the termination of program is the synthesis of 
so-called ranking function which maps each program state to a value in a well-founded domain. The 
progress is that, by demonstrating that each step in the execution of program reduces the measure 
assigned by the ranking function, we can make sure such given program terminates. By constructing 
a ranking function of a given program, we make each process of program execution correspond to a 
chain of elements of the well-founded domain. Therefore, we conclude that the given program 
terminates. Namely, the existence of a ranking function of a given loop implies that such loop must 
terminate. Several methods about synthesizing ranking functions have been studied in [4,5,6,7,8,9]. 
In contrast to ranking function discovering, recently some algebraic approaches have been applied to 
program verification. 

Let � denotes reals and
n

n = × × ×


� � �  � . A simple while Program over n� can be described 
specifically as follows: 

while ( )  do { : ( )}X X F X∈Ω =　 　　 　   end.                                                                                     (1) 
Where nX ∈� , nΩ⊂ � and : n nF →� �  is a continuous mapping. A. Tiwari[10] proved the 
decidability of a linear case of (1) as while ( ) do { }BX > b X := AX +c　 　    end. by real eigenvectors 
belong to positive eigenvalue of A, where A is an n×n matrix, B is an m×n  matrix, x, b, and c are 
vectors. M. Braverman[11] discussed the termination of such a program over integers. To avoid 
errors caused by floating-point computation, Yang. L et al. [12, 13] further proposed a method to the 
termination of these programs by calculating symbolic conditions. 
A nonlinear loop over reals can be described as 1P while ( ) do { : ( )}x x f x∈Ω =: 　    end. Where Ω⊂ � , 

:f →� �  is continuous. Some cases of P1 were discussed by Yao [14] and an interesting result was 
given as follows: 
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Theorem [14, Theorem 1] Loop program  
2P : while ( ( , )) { ( )}x a b do x := f x end∈　 　 　  　 　 , 

Where a, b are reals, and f(x) is a real continuous function. If program P2 is non-terminating, then f 
has fixed point in the closed interval [a, b].   
In more complicated cases, i.e., Ω is union of disjoint intervals, [14] gave following example:  
Example 1 

11 19P : while ( [0, ] [ ,1]) { ( )}
20 20

x x := f x∈ ∪　 　do  end, where

1 1, [ , )
2 2( )

12(1 ), [ , )
2

x x
f x

x x

 + ∈ −∞= 
 − ∈ −∞


 

The updating function f has no fixed point inΩ . But this loop does not terminate because f (0) = 1
2

, 

1( )
2

f =1, f (1) =0. 

Example 1 shows that the non-terminating of nonlinear loops over intervals may be caused by periodic 
orbits instead of fixed point of  f.  And termination of a special case of nonlinear loops over intervals is 
decided in [15] by fixed point either. Reference [16, 17] presented methods to discuss such programs 
by calculating periodic orbit of f. In this paper we discuss the termination of 1P　on open constraint 
domain Ω  with periodic orbit on the boundary of Ω . As an application, corresponding algorithms and 
examples are given. 

Preliminaries 

Basic notions.  

 1 1 2 2
1

( , ) ( , ) ( , ),
s

i s s
i

I a b a b a b where s
=

Ω = = ∪ ∪ ∪ ∈∪  �  are integers, ,i ia b ∈� , Ii =(ai, bi), and 

i ia b<  , i=1,… s. 
 The n-th iteration of a continuous :f →� � defined as 1( ) ( ( )), ,n nf x f f x n−= ∈�  

and 0 ( )f x x= .  
 An orbit of f staring from a point x∈Ω  denoted by { }fOrb x = 2{ , ( ), ( ),..., ( ),...}nx f x f x f x . 

 A real 0x  is called a k-periodic point of f, if 0 0( ) ,kf x x= and 0 0( )rf x x≠ for all1 ,r k≤ < k∈� . 
Specially, 1-periodic point is called as fixed point. 

 A real 0x  is called a locally monotonic point of f, if 0x has a left neighborhood 0 0( , )x xε− and a 
right neighborhood 0 0( , )x x ε+  , and f is monotone in both of the neighborhoods. 

Termination of  Nonlinear Loop over Intervals.  
In following sections the loop condition of 1P  is described as open set Ω  and every point x∈Ω is 
assumed to be locally monotonic. P1 is terminating iff for all x∈� , P1 is terminating. Applying the 
definition of iteration, termination of nonlinear loop P1 can be stated as following forms: 
 P1 is terminating ⇔ 0 ,x∀ ∈� there exists a positive integer i such that 0( )if x ∉Ω . 
 P1 is non-terminating ⇔ 0 ,x∃ ∈Ω  0( ) , 1, 2,....if x i∈Ω =   i.e. , 0{ }fOrb x ⊂ Ω . 
If 0{ }fOrb x ⊂ Ω , 0x is called a non-terminating point. Otherwise we call it a terminating point. If 
every 0x in Ω  is a terminating point, P1 is terminating. 
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Termination of P1 with periodic orbit on the boundary  
We first discuss the termination of P2 with fixed point on the boundary. [14] gave a complete 
algorithm for P2 but following properties are useful to the case of periodic orbit.  
Lemma 1. Assume that ( . )a resp b is the unique fixed point of f in 2P , f has a monotonic 
neighborhood (a, c) of a (resp.  (c, b) of b).If 2P  is non-terminating, then 

1).The non-terminating orbit 0{ }fOrb x is an infinite orbit. 

2).For every non-terminating orbit 0{ } [ , ]fOrb x a b⊂ , it has a sub-sequence 0 1{ ( )}kn
kf x ∞
= such that 

0 0lim ( ) ( . lim ( ) )k kn n

k k
f x a resp f x b

→∞ →∞
= = .  

Proof: For an indirect proof, we assume that the non-terminating orbit 0{ }fOrb x is finite. Then there 
exists a small positive real numberε such that 0{ } ( , )fOrb x a bε ε⊂ + − . Applying Theorem 1 in [14] 
to loop while ( ( , )) do{ ( )} end ,x a b x := f xee ∈ + −　  we get a contradiction that this loop is 
non-terminating but f has no fixed point in [ , ]a bε ε+ − . 
If 2P is non-terminating and the non-terminating orbit 0{ }fOrb x is an infinite orbit. For arbitrary given 

small positive 0,kδ → there exists kn ∈� such that 0( ) ( , )kn
kf x a a δ∈ + . Else we have a positive 

smallε such that 0{ } ( , )fOrb x a bε ε⊂ + − . Similarly it is a contradiction to the hypothesis that a is 
the unique fixed point of f. This is the end of the proof.          □ 
According to function f which has a monotonic neighborhood (a, c) of a (resp. (c, b) of b), following 
lemmas are very simple: 
Lemma 2. Assume that x a= is the fixed point of  f  in 2P , f is monotonic in a neighborhood (a, c) of a. 
If f has no fixed point in (a, b), then one of the following four cases happens:   

i). ( )f x a≡  in (a, c). 
ii). f is decreasing and ( )f x x< in (a, c). (see Fig. 1) 
iii). f is increasing and ( )f x x<  in (a, c). (see Fig. 2) 
iv). f is increasing and ( )f x x> in (a, c). (see Fig. 3) 

Lemma 3. Assume that x b= is the fixed point of f in 2P , f is monotonic in a neighborhood (c, b) of b. 
If f has no fixed point in (a, b), then one of the following four cases happens: 

v). ( )f x b≡ in (c, b). 
vi). f is decreasing and ( )f x x>  in (c, b). 
vii). f is increasing and ( )f x x>  in (c, b). 
viii). f is increasing and ( )f x x<  in (c, b). 

Theorem 1. Assume a (resp. b) is a fixed point of  f  in 2P , f is monotonic in a neighborhood (a, c) of 
a (resp.  (c, b) of b). If f has no fixed point in (a, b), then 2P is non-terminating iff the cases iii) or vii) 
happens. 
Proof: Assume that x a= (resp. b) is the unique fixed point of f. If cases i) happens, then every point 
x in (a, c) is obviously terminated because f(x)=a. For point x in [c, b), x is non-terminating means 

{ } ( , ).fOrb x a b⊂  By Lemma 1 we have a sub-sequence 1{ ( )}kn
kf x ∞
= , lim ( )kn

k
f x a

→∞
= , which is a 

contradiction  with the fact that every point x in (a, c) is terminating. Termination of 2P is clear for the 
case ii) or vi). If case iii) happens, then every point in (a, c) is non-terminating because 

1( ) ( ) ( )n nx f x f x f x−> > > > >   by monotonicity of f. Therefore lim ( )n

n
f x a

→∞
=  and 

{ } ( , ).fOrb x a b⊂  Case iv) implies that 2( ) ( )x f x f x< < < for x in (a, c), which means 

that { }fOrb x could not have a subsequence 0 1{ ( )}kn
kf x ∞
= , lim ( )kn

k
f x a

→∞
= . The other cases can be 

proved similarly.    
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If the endpoint a and b are all fixed points of f. By Lemma 2 and 3, we only have six cases happened 
in a and b simultaneously: (1) i) and viii); (2) ii) and viii); (3) iii) and viii); (4) iv) and v); (5) iv) and vi); 
(6) iv) and vii). 
It is clear that 2P is non-terminated when case (3) or (6) happens. This is the end of the proof. 

 
The case that f is differential in a neighborhood (a, c) of a (resp. (c, b) of b) is much simple. A fixed 
point 0x of f is said to be a stable fixed point if 0'( ) 1f x <  (resp. unstable fixed point if 0'( ) 1f x > ). 
Every point in the neighborhood of 0x will be attracted (resp. rejected) by 0x under the iteration of f 
(see [8] P26). Case i) to viii) can be described as follows: 
i) '( ) 0f x ≡ in (a, c); ii) '( 0) 0f a + < ;iii) 0 '( 0) 1f a< + < ; iv) '( 0) 1f a + > ;v) '( ) 0f x ≡ in (c, b); vi) 

'( 0) 0f b − < ;vii) 0 '( 0) 1f b< − < ;viii) '( 0) 1f b − > . 
The case that '( 0) 1f a + = and '( 0) 1f b − = need to be decided further. From Lemma 1-3 and 
Theorem1 we establish an algorithm TPI1(Termination of Program over an finite Interval) for 
Loop 2P : 
TPI1. Input: continuous and locally monotonic function f,  

Output: T (termination), NT (non-termination). 
Step1: Calculate the fixed point of f . Whether f has a fixed point which belongs to ( , )a b ? Yes, 

Output: NT, Quit; No, go to the next step. 
Step2: a (or b) is a fixed point? Yes, Calculate the point c such that f is monotone in (a, c) (resp. (c, 

b)), go to step 3; No, Output T, Quit. 
Step3: Whether f satisfies case iii) in (a, c) or case vii) in (c, b)? Yes, Output: NT, Quit; No, Output: 

T, Quit. 
Note that we can use 0< '( 0)f a + <1 or 0 '( 0) 1f b< − < for judgment in Step2.  
Next we discuss 1P with an open domainΩ . Let r be a nonnegative integer. Define : {iN r= there are 
exactly r intervals

1nI
2

, nI ,…,
rnI in 1,I 2I ,..., ,sI such  that ( ) . 1,..., .

ji nf I I j rf∩ ≠ = }. We discuss 

termination of 1P  under following hypotheses: 
1, 1,..., .iN i s≤ =                                                                                                                              (2) 

f  is monotonic in every interval , 1,...,iI i s= .                                                                                 (3) 

The case that 1, 1,...,iN i s≤ = and 1iN > were discussed over Ω in [16] and [17] respectively, where 

Ω  is the closure ofΩ . Under hypotheses (2) and (3) the termination of 1P can be determined by 
k-periodic orbit of  f with k s≤ . If the k-periodic orbit is inΩ , 1P is non-terminating. But the case that 
the k-periodic orbit is on the boundary ofΩ is still undecided. Without loss of generality, we assume:  

 f has a s-periodic orbit 1 2{ , ,..., }sx x xγ = , 1( ) ,i if x x +=  1,..., 1i s= − and 1( )sf x x= . There exit 
integer k and a set 

1 1 1 2 1 2 1 1{ ,..., , ,..., } { , ,..., } { ,...., , ,..., }
i iik ik s s sx x x x x x x a a b b− − + + ⊂ ∩ ,1 k s≤ ≤ , where 

,
it ir

x x− +  are left and right endpoint respectively of some intervals in Ω .                                                       (4)  
A neighborhood of the periodic orbit can be described as 

1 1 2 2: ( , ) ( , ) ( , )s sL x x x x x xγ ε ε ε ε ε ε= − + × − + × × − +  . 
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Lemma 4. Loop 1P satisfies (2), (4), and f has not other s-periodic orbit inΩ .If 3P is non-terminated, 
then 

1).The non-terminating orbit 0{ }fOrb x is an infinite orbit. 
2).For every non-terminating orbit 0{ }fOrb x ⊂ Ω , it has s sub-sequences converge to 1 2, ,..., sx x x  

respectively. 
Proof: By hypotheses (2) and (4), we have 1iN = for i=1,…, s. Without loss of generality, assume 

that
ii tx I∈ , i=1,…, s. Therefore 1 2( )t tf I I f∩ ≠ , 2 3( ) ,t tf I I f∩ ≠ …, ( 1)( )t s tsf I I f− ∩ ≠ , 

1( )ts tf I I f∩ ≠  by (2) and the continuity of f. If f has a non-terminating orbit 

2
0 0 0 0 0

1

{ } { , ( ), ( ),..., ( ),...}
s

n
f i

i

Orb x x f x f x f x I
=

= ⊂ , by the order of f iterating in Ω , we have 

1
1 0 0 1 2 0 0 2: { ( )} , : { ( )} ,...,ns ns

n t n tA f x I A f x I∞ + ∞
= == ⊂ = ⊂ ( 1) 1

0 0: { ( )} .n s
s n tsA f x I+ − ∞

== ⊂ Let : sG f= , G is 
continuous and satisfies 1 0 0 1 2 0 0 2{ ( )} , { ( ( ))} ,..., n n

n t n tA G x I A G f x I∞ ∞
= == ⊂ = ⊂  

1
0 0{ ( ( ))} .n s

s n tsA G f x I− ∞
== ⊂  Discuss function G by Lemma 1 we have 1) and 2) hold. This is the end 

of the proof. □ 
From lemma 4, if f has a period orbit 1 2{ , ,..., }sx x xγ = , , 1,...ix i s=  are fixed points of function 

sG f= . Therefore, a periodic orbit γ is said to be attracting (see [18]) if there is a neighborhood 
Lγ ofγ , 

0

( ) , ( ) .j

j

f L L f Lγ γ γ γ
>

⊂ =                                                                                                             (5) 

If f is differential, (5) can be replaced by 1 2: '( ) '( ) '( ) 1sf x f x f xγµ = < . Similarly, if 1γµ > ,γ is a 
repelling orbit. 
Because the updating function f of loop 1P  has a s-periodic orbit 1 2{ , ,..., }sx x xγ =  with 

1 2{ , ,..., }i i ikx x x  on the boundary ofΩ , the neighborhood of γ can be described as  

1 1( , ) ( , ) ( , ) ( , )it it ir ir s sx x x x x x x xε ε ε ε ε ε− − + +− + × + × − × − +                                                           (6) 
where itx− s are left endpoints and irx+ s are right endpoints of some intervals inΩ . The termination of 
loop 1P  can be decided by algorithm TPI1 for G infor i=1,…,s. Sometimes computing sG f= may be 
difficult (e.g. piecewise polynomial-functions), we can discuss the termination of 1P  by following 
algorithm: 
TPI2. Input: continuous and locally differential function f, the unique s-periodic orbit 

1 2{ , ,..., }sx x xγ =  of f, and 1 2{ , ,..., }i i ikx x x γ⊂ are endpoints of ,1 k sΩ ≤ ≤ . 
Output: T (termination), NT (non-termination). ND (non-determined) 
Step1: Calculate γµ for f. If ix is the left (resp. right) endpoint then calculate '( 0)if x + (resp. 
'( 0)if x − ) instead of '( )if x  in γµ . Whether 1γµ = ? Yes, Output: ND, Quit; No, go to next step. 
Step2: 1γµ > ? Yes, Output: T, Quit; No, go to next step. 
Step3: Take a positiveε small enough and construct a neighbourhood of Lγ as (6). Take a point 

0y Lγ∈  and compute 1
0 0 0( ),..., ( ), ( )s sf y f y f y− . 

Whether 1
0 0 0( ),..., ( ), ( )s sf y f y f y Lγ

− ⊂ ? Yes, Output: NT, Quit; No, Output: T, Quit. 

Conclusion 
In this paper, by computing periodic orbit of nonlinear updating function, we consider the termination 
of nonlinear loop P1 and present the corresponding decison algorithms. For the general programs  
having several program variables, the termination problem will be considered in another paper. 
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