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Abstract. This paper proposes a model named Independent Component Analysis with Reference 
Curve (ICARC) to extract and remove artifact signal from Electroencephalogram (EEG). Firstly, an 
additional requirement and a priori information are introduced directly into the contrast function of 
the traditional ICA model. Then, an augmented Lagrangian function is formed based on this new 
model. Finally, the iterative solution is calculated by using the Newton iterative method. The 
simulations and experiments are implemented to indicate the performance of our model comparing 
with other method. The results show that: 1) more stable results are given by our model; 2) higher 
precision is obtained in the results by the ICARC model. 

Introduction 
The electroencephalogram (EEG) is a useful diagnostic signal for the clinical conditions [1], but 

with problem in reading and analyzing due to the artefacts such as eye blinking, eye movement and 
heartbeat [2]. It is difficult to reduce these artifacts by the traditional filtering methods due to their 
high amplitude and overlapping frequency band with the EEG signal [3]. The regression-based 
methods [4] and adaptive filtering methods [5] can reduce artifacts, but the measurement of 
reference channels is not always available. The Principal component Analysis (PCA) method 
decomposes the raw EEG signal to components, and reconstructs the clean EEG by eliminating the 
artifact components [6]. But the assumption that the components are algebraically orthogonal is 
difficult to be fulfilled. The Independent Component Analysis (ICA) is applied in the EEG 
decomposition, but with two major insufficiencies: 1) the noise and artifacts bring too many useless 
components; 2) the noise or artifacts components need to be identified by other methods. By 
introducing a priori information to the ICA model, a method named constrained independent 
component analysis (cICA) model is proposed in literature [8]. Later, the paper [9] proposes an 
improved cICA method to obtain more accurate results. However, the results of the cICA model 
vary among different implementations. This paper proposes a method named ICA constrained by 
Reference Curve (ICARC) to overcome the drawbacks of the cICA model.  

The principle of the ICARC model  
The classical ICA model can be expressed as the following linear relationship: 

c t× = ×X A S                                                                  (1) 

where, [ ]2, , , T
c t 1 c× =X x x x is the EEG signal; c represents the detected channels; t represents the 

sample points; A is an mixing matrix; [ ]2, , , T
1 m=S s s s  is the independent components. X is 

assumed with zero average row vectors, which is always not fulfilled. So a preprocessing [10] is 
applied as 
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                                   (2) 
where, , ( , , , )i i 1 2 c=x  are the vectors filled with the mean of , ( , , , )i i 1 2 c=x  in equation (1); 

ˆ , ( , , , )i i 1 2 c=x   are vectors subtracting ix from ix ; X is the matrix after preprocessing; 
, ( , , , )i i 1 2 t=x   satisfy { }T

i iE × =x x I  ; wD is called whiten matrix [10]. Based on the principle of 
the ICA model, the ICARC model is proposed as  
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                     (3) 
where, b is the vector wanted; r is the reference curve for is in equation (1); x represents all 

the column vector in X ; ( )G � is a nonlinear function [10]. According to the Karush-Kuhn-Tucher 
(KKT) condition [11], the Lagrangian function for equation (3) is given as  

2 20 1
22

( , ) {G( )} ( 1)T TL Eβ β= × − × − + × −b b x b X r b
                              (4) 

where, β is the Lagrange multiplier. The solution of b should satisfy following requirement. 
0 0 1 1

1
{ ( )} 2 ( ) 0

t
T T

jj j
j

LF E g β
=

∂
= = × × − × × × − + × =
∂ ∑x b x x b x r b
b

   

                     (5) 
where, ( )g � is the derivative of ( )G � ; t is the maximum sample point; jr represents the jth 

element of r . In order to solve equation (5), its Jacobian matrix is calculated firstly as  
0 0 0 1 1 0

1
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T T T T

j j
j
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v (6) 

where, 
0 0{ } { }T TE E× = × =x x x x I    ; 
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; ( )g′ � is the derivative of ( )g � . 
The iterative solution can be obtained by equation (7) by using Newton iteration method [12]. 
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         (7) 
Because the denominator is a scalar, equation (7) can be replaced by  
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             (8) 
With the optimal value *b , a signal according to the reference curve r will be given by 

* 1= ×y b X                                                                   (9) 
where, 1X is shown in equation (3). Because y is independent to other signals. It can be 

removed from each observed channel ,( , , , )i i 1 2 c=x   as shown in equation (10).  
[ ]2
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                                              (10) 

where, clcX represents the clean EEG data set; ( , )T
iρ x y is the correlation coefficient operator. 

Simulations, experiments and discussions  
Figure 1 (a) gives the four synthetic signals. Figure 1 (a) gives the mixed data set. Figure 1 (c) 
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gives the reference signals, which are obtained from the sign of the four original sources. Four 
signals are extracted by the ICARC and cICA model for 10 times respectively, the results are list in 
table 1. From the results we can see: 

1) The results given by the ICARC model are consistent among the 10 times, but the results 
given by the cICA model are not. All the errors given by the ICARC model are much smaller. 

2) The time used by the ICARC model is much less than that by the cICA model. The average 
time used by the ICARC model is 0.0025 Seconds, while the cICA model uses 0.5 seconds. 

 
(a) The four synthetic sources       (b) The mixed signals      (c) The four reference signals 

Fig.1. the simulation data set 
Table 1. The results of the simulations. The ‘errori’ is the error between the ith synthetic signal and 

the calculated signal. The ‘time’ are the time used. The ‘Ave’ is the mean value of the ten 
simulations. 

No. 1 2 3 4 5 6 7 8 9 10 Ave 

cI
C

A
 

error1 5.4 5.0 4.6 19.6 5.0 4.9 23.6 4.9 5.8 23.4 10.2 
error2 4.2 0.8 0.6 4.7 1.5 0.8 0.9 4.0 3.6 0.8 2.2 
error3 22.4 22.6 16.3 16.5 4.0 5.6 1.8 9.8 5.7 2.8 10.7 
error4 1.5 5.5 2.0 4.7 5.6 4.9 4.8 1.7 1.7 1.5 3.4 
time(s) 0.3 0.4 0.7 0.5 0.2 0.4 0.9 0.5 0.4 0.7 0.5 

IC
A

R
C

 error1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
error2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
error3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
error4 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 
time(s) 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.001 0.0025 

Figure 2 (a) shows the 17-channel EEG with the artifacts. Let the seriously contaminated 
channels (channel 1, 8 and 13) be adopted as the reference signals for the eye blinking artifact, the 
heart artifact and the eye movement artifact respectively. Figure 2 (b) shows the three calculated 
artifact signals. Figure 2 (c) shows the clean EEG signals. Ten experiments are implemented 
respectively. The results are list in Table 2. From the results we can see: 

1) The time used by the ICARC model for every artifact extraction is much less.  
2) The time and step used by the ICARC model is more stable than that by the cICA model. 
3) The errors between the individual curve and the mean curve of the ten experiments are small.  

 
(a) The EEG signal with artefacts  (b) Three artifact components   (c) The clean EEG signals 

Fig.2. The experiment data set 
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Conclusion 
This paper proposed the ICARC model to extract the artifact signals form the EEG data set by 

introducing a priori knowledge into the contrast function of the ICA model directly. Through the 
simulations and experiments, following conclusions are drawn: 1) the results given by the ICARC 
model were consistent; 2) the errors given by the ICARC model were much smaller; 3) the time 
used by the ICARC model was much less; 4) the ICARC model are practical for EEG data set. 
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Table 2. The results of the experiments. The ‘timei’ and ‘stepi’ are the time and step used for the 

ith artefact extraction. The ‘errori’ is the error between ith calculated artifact signal and the mean 
cure of the ten results. The ‘Ave’ is the mean value of the ten experiments. The ‘Std’ is the standard 
derivation of the ten experiments. The column of ‘Factor’ is the order of the magnitude. 

No. 1 2 3 4 5 6 7 8 9 10 Ave Std Factor 

cI
C

A
 

time1(s) 1.9 0.9 1.1 0.06 1.3 1.8 2.6 0.05 0.06 0.06 0.9 0.9 ×10-1 
step1 289 187 218 11 254 339 503 11 12 11 183.5 170.7 ×10-0 

error1 17.1 16.8 16.8 35.8 16.8 16.6 16.5 34.2 39.9 32.5 24.3 9.9 ×10-0 
time2(s) 1.1 1.6 0.08 0.1 0.08 1.7 3.3 0.9 0.09 0.09 0.9 1 ×10-1 

step2 120 198 11 11 11 224 390 107 13 12 109.7 128 ×10-0 
error2 38.4 35.9 39.7 23.5 31.2 24.4 40.0 24.5 23.7 39.5 32.1 7.4 ×10-0 

time3(s) 5.6 4.2 0.05 1.5 0.06 0.98 0.06 4.4 4.1 0.06 2.1 2.2 ×10-1 
step3 877 808 11 291 11 186 11 843 803 11 385.2 396.3 ×10-0 

error3 27.2 27.2 33.1 27.8 44.8 44.1 36.6 27.4 27.8 43.9 34.0 7.7 ×10-0 

IC
A

R
C

 
  

 

time1(s) 10 9.5 10 9.6 9.3 6.5 6.2 11 10 11 9.3 1.7 ×10-4 
step1 4 4 4 4 4 3 3 4 4 4 3.8 0.4 ×10-0 

error1 0.75 0.75 0.75 0.75 0.75 3.1 3.0 0.75 0.75 0.75 1.22 0.98 ×10-7 
time2(s) 11 11 12 8.4 6.7 6.9 11 11 11 6.9 9.6 2.1 ×10-4 

step2 4 4 4 3 3 3 4 4 4 3 3.6 0.52 ×10-0 
error2 2.1 2.1 2.1 3.1 3.0 3.2 2.1 2.1 2.1 3.5 2.5 0.57 ×10-7 

time3(s) 7.9 6.2 7.3 7.3 7.6 9.5 6.7 5.9 5.9 8.9 7.3 1.2 ×10-4 
step3 3 3 3 3 3 4 3 3 3 4 3.2 0.4 ×10-0 

error3 0.8 1.9 0.4 0.9 0.9 1.2 1.8 0.6 0.7 1.2 1.0 0.5 ×10-7 
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