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Abstract. Edge rolling is a vital method for width control in rolling. The plastic deformation doesn't 
go deep into center of the slab, since the high ratio of width to thickness, and only occurs in the edge. 
Cosine dog-bone model is applied to describe dog-bone shape and used to establish a knematically 
admissible velocity field in edge rolling. Based on this model and field, the functional of the edge 
rolling power is obtained with the model using variable upper limit integration. Analytical solution of 
the dog-bone shape can be got through minimum energy principle. The calculated results of the shape 
parameters are compared with FEM simulation and traditional models. 

Introduction 

As the increasing in the demand for steel product with high quality, the precision of slab width control 
is vital in edge rolling. The formation of dog-bone shape, as shown in Fig. 1, which formed by this 
processing is important for us to predict the final width after horizontal rolling. 

Many scholars ever studied dog-bone shape in the past, Okado [1] proposed a mathematical 
formula to predict dog-bone shape for the first time and then it was modified by Tazoe [2]. Later, 
Ginzburg [3] fitted the experiment data again. Xiong [4] proposed shape model through physical 
simulation. Yun [5] presented a new model for predicting the dog-bone shape recently. Unfortunately, 
complete analytical dog-bone shape function hasn’t been reported yet in edge rolling. 

In this paper cosine model is proposed to describe dog-bone shape and kinematically admissible 
velocity field based on the model is established in edge rolling. With Mean Yield Criterion and upper 
variable limit integral, analytical expression of total deformation power is obtained. Calculated 
results based on cosine model are compared with those calculated by FEM simulation and traditional 
models. 
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Fig.1. Sketch of cosine dog-bone profile 

Cosine dog-bone model 

A slab (2L×2W0×2h0) is rolled through a pair of vertical flat rolls (R) as Fig. 1. The slab unilateral 
width reduction is ΔW=W0 − WE and bite angle is given by θ=sin-1(l/R). Roll circumferential speed is 

Rv  and the inlet velocity of slab is 0 cosRv v θ= . Coordinate system is set up in center of the entrance 
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cross section and the axes x, y, and z represent length, thickness, and width directions of slab. A 
quarter deformation zone is considered and half of the width is ( )22

x EW R W R l x= + − − − . 
Cosine dog-bone function with symmetry is proposed, as shown in Fig. 1. The bite zone is divided 

into two districts (I and II) and the end part of the dog-bone (II) is divided into three equal parts along 
the width direction. The width parameter Ax is 

( )3 3x x EA W W A= − +                                                                                                                   (1) 
Where Wx − 3Ax=WE − 3A, A0=ΔW/3+A, Al=A. 
District I (0<z<Wx − 3Ax), half thickness = ( , )h h x zⅠ Ⅰ  is 

0h h=Ⅰ                                                                                                                                             (2) 
District II (Wx − 3Ax<z<Wx), half thickness = ( , )h h x zⅡ Ⅱ  is 
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− +  
Ⅱ                                                                      (3) 

Where β is undetermined parameter. The peak height of the dog-bone is hb=h0+2βΔW and the 
edge height is hr=h0+βΔW. Plane strain had been assumed in edge rolling according to Ref.[6] and 
then the volume of metal pressed by lateral is equal to the volume raised in thickness direction. So the 
incompressibility condition is satisfied in every cross section in rolling direction. 

( ) ( )0 0 0 03
= x

x x

W

x x W A
W W h W h h h dz

−
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Substituting Eqs. (2)-(3) into Eq. (4) yields 
( )( )03 2 3 3x Eh W W Aβ π π = + − +                                                                                              (5) 

The value of A in various production conditions can be got by minimizing the total power 
functional. 

Velocity and strain rate field 
According to plane deformation assumption, velocity field in plastic zone is established based on 
boundary conditions. 
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The equations above satisfy the boundary conditions and they are kinematically admissible 
velocity and strain rate fields. 

Total power functional  

Internal deformation power. In Eq. (6) max min,y zε ε ε ε= =    , the Mean Yield Criterion [7]  is adopted 
to integrate internal deformation power. 
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Shear power. The shear power at entry section is 

( ) ( )
3

2 2 3 1 20 0
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2 tan 2 1 ln 1 ln 1
9 3
s
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A
s θ − − = + + + + + + +  

                                  (8) 

Where ( ) 03P W A h= ∆ + . The sheer power in the interface between zone I and II is 
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                                                                                 (9) 

Friction power. The friction power act on the interface between the roll and slab is 
2 24

3
s r

f y t
m h RW v vs θ

= ∆ + ∆                                                                                                        (10) 

Where m is the friction factor;
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are the mean height, velocity discontinuity in y direction, and tangential velocity discontinuity. 
Total power minimization. Substituting Eqs. (7-10) into *

1 2 +i s s fJ W W W W= + +     [8]   yields the 
analytical solution of total power functional. Differentiating the total power J* with respect to the 
arbitrary variable A and setting it to be zero, the following equation can be obtained 

1 2 0fi s s dWdW dW dWdJ
dA dA dA dA dA

∗

= + + + =
  

                                                                                         (11) 

The value of A in different production conditions can be received by solving Eq.(11), which is the 
most close to the fact, and then the shape parameters are obtained. 

Calculations and analyses 
Using the three dimensional finite element method to predicte plastic deformation during edge rolling. 
The rolling conditions selected to investigate the dog-bone shape are summarized in Table 1. 

Table 1. Rolling conditions for FEM simulation 
Initial thickness W0 

[mm] 
Initial width h0 

[mm] 
Roll radius R 

[mm] 
Engineering strain 

ΔW/W0 
friction 
factor 

50-200 1200-1600 50-200 0.01-0.05 0.6 
 
The variations of dog-bone peak height hb and edge height hr are achieved in different rolling 

conditions including engineering strain ΔW/W0, roll radius R, and initial thickness h0. The 
comparisons between cosine model’s and FEM simulation’s results are shown in Fig. 2-4. It can be 
known that the results of cosine model agree well with that of FEM simulation within 5.2% error. 

In Fig. 2, the variations of hb and hr with different engineering strain ΔW/W0 are given. Obviously, 
the values of hb and hr increase linearly with the increasing of ΔW/W0 because the volume in 
deformation zone has been increased, and then the dog-bone shape is gradually apparent. Fig. 3 
shows the effect of initial thickness h0 on hb and hr. The contact area and the volume of compressed 
metal increase with the increasing of h0, and then hb and hr increase linearly subsequently. In Fig. 4, 
it can be seen that hb and hr increase with the increasing of roll radius R, therefore, increasing roll 
radius may be considered as a method to reduce inhomogeneous deformation in newly built edge 
rolling mill. 

The dog-bone shapes at the exit cross section predicted by cosine model, Yun’s model, Okado’s 
model and FEM simulation are shown in Fig.5. It is seen that the dog-bone profile predicted by cosine 
model are much higher accuracy than those forecasted by Yun’s and Okados’ models. 
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Conclusions 
(1) The cosine dog-bone model and kinematically admissible velocity and strain rate fields are 

proposed according to the incompressibility condition.  
(2) Using the above velocity and strain rate fields and model, analytical solution of the dog-bone 

shape is got through minimum energy principle. 
(3) The effects of engineering strain, initial thickness, and roll radius upon hb and hr are obtained. 

Parameters of shape obtained from the cosine model are consistent with other models’ and FEM 
simulation’s results. 
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Fig. 2. Effect of ΔW/W0 on hb/h0 and hr/h0         Fig.3. Effect of h0 on hb/W0 and hr/W0  
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Fig.4. Effect of R on hb/h0 and hr/h0     Fig.5. Comparison of cosine, FEM, Yun's and Okado's models 
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