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Abstract. The effects of the model and weight function on outlier detection are evaluated by the 
simulated optical and radar observations. The iterative reweighted M-estimation based on different 
iterative reweighted functions is used for the outlier detection test. Three typical models of the optical 
and radar tracking data are compared for their effect on the outlier test. The simulated results show 
that different weight functions have small difference on the outlier detection efficiency and a good 
modeling selection for the same dataset is an key factor for a best outlier detection procedure.  

Introduction 

To date many approaches have been deeply developed to identify the outliers more accurately. 
There are two different strategies to mitigate the presence of outliers[1][2]. The first is to identify 
outliers using outlier tests, and then reject the observation exceeding the critical value for the desired 
significance level based on the statistic test. If multiple outliers exist then the single outlier test is 
applied iteratively with the strategy of removing the largest observation first until all the outliers have 
been removed. The second method is to use robust methods that without removing any observations 
but down weight suspect observations. When multiple outliers exist, the first method often failed 
because of the separation. Separability refers to the ability to distinguish or separate outliers from the 
other normal observations. The poorly separated observations adversely affect the solution of the 
system by manifesting a high risk of incorrectly flagging a 'good' observation as an outlier or vice 
versa.  

In the methods of the second kind, the M-estimation, which is implemented by the iterative 
reweighted least square, is popular for its simplicity. Different weight functions have been defined for 
the M-estimation method; if this is the case then which proper weight function should be used for the 
outlier detection of the given problem? Ideally, the method chosen should be capable of handling 
multiple outliers. The method should also be resilient to the effects of incorrect exclusion where only 
some of the outliers are identified and wrong exclusion where a correct observation is identified. If 
neither incorrect exclusion nor wrong exclusion occurs then it is a correct exclusion as all of the 
outliers and only the outliers have been excluded. 

As a result of this, it is the intention of the study to compare the abilities of the outlier test to 
correctly exclude outliers in three typical models of the optical and radar measurements. The 
comparison is based on miss rate and false alarm rate. The model effect to outlier detection is also 
considered in the comparison.  

Methodology 
Three typical models are considered in the research. All of the models use the same set or subset of 

the dataset. Different models are used to evaluate for the model effect in the outlier detection. 
Single Epoch Model. The first model is called single epoch model which uses multiple 

synchronized observations from different measure devices. The system measurement equation is 
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made by the synchronized measurements of different optical or radar measure devices from the same 
epoch time.  

The measurement equations of the optical or radar measure devices can be written by a general 
non-linear vector function as: 

( )= +R h x ε ,           (1) 
where ( )h x  is the non-linear measurement equations; ε  is the observation errors vector. 
The linearized measurement equations at the preliminary position 0x  of the tracking target is 

= +∆ ⋅∆R H x ε ,                            (2) 
where ∆R  is the OC (observation minus the computed) residuals vector;  H  is the linearize 

partial derivatives matrix of ( )h x  with respect to x  at 0=x x , 
0
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; ∆x  is the estimated 

parameters vector of the equation. 
Time Series Model. In the second model, which is called the time series model in the paper, is 

constructed by time series data of a selected measure element type from one measure device. The 
time series data ( )R t  is modeled by a polynomial: 
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where ja  is the coefficients of the polynomial;  q  is the order of the polynomial;  ( )tε  is the 
observation error at time t . There is numerical stability problem for the applications using the Eq. 1. 
So the orthogonal polynomials replace the simple one in the Eq. 1: 
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where { }( )jp t  satisfy the following equations: 
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Then get the discrete version of the Eq. 3 at time it : 

0
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=
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where jβ  is the coefficients of the orthogonal polynomials,  ( )itε  is the observation error at time 

it . The vectorized version of the Eq. 6  is : 
= ⋅ +R C β ε ,           (7) 

where ( )1 2( ) ( ) ( ) T
mR t R t R t= R ,C  is the known matrix,  ( )0 1

T

qβ β ββ =  is the 
estimated polynomial coefficients vector,  ε  is the errors vector, m  is the total sampling count. 

Fusion Model. The third model called the fusion model. The position of the tracking target is 
defined as: 

( )Tx y z=x ,           (8) 

and ,
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=∑ , where , jβ⋅  is the coefficients 

of the orthogonal polynomials. 

From Eq.1 and Eq. 8, we can get the following equations, including a linearized version: 
( ) ( )= + = +R h x gε β ε ,                    (9) 

∆ = ⋅∆ +R G β ε ,         (10) 
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where ∆R  is the OC residuals vector of multiple measure devices and multiple observation 
epochs;G  is the linearized partial derivatives matrix; ∆β  is the estimated vector of the equation. 

The above equations of the three types can be solved by the robust M-estimation introduced by 
Huber[1]. M-estimation is a generalized form of maximum likelihood estimation (MLE) and an 
iteratively reweighted LS estimation is used to solve it. Several weight functions were introduced in 
the past few years[2-6]. The weight functions considered in the paper are listed in the following Table 
1. 
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Results and Analysis 
Outliers of varying size and number were added into the simulated observations according to an 

predefined probability. The three standard deviation threshold is chosen in the outlier detection test. It 
is most likely that robust methods would have significantly reduced the influence of residuals of this 
magnitude. Once a residual greater than three standard deviations, it is identified as an outlier.  

The same simulated dataset was used for the three typical model. The comparisons of different 
models for different weight functions are displayed in the Table 2, 3 and 4 respectively. 

Table 2. The outlier detection efficiency of the single epoch synchronized model 
Weight function Miss rate False alarm rate 

Huber 0.0972 0.0016 
Hampel 0.0555 0.0118 
Andrews 0.1111 0.0032 

Tukey 0.1111 0.0049 
IGGIII 0.1250 0.0021 
Danish 0.0972 0.0048 

L1-norm 0.0555 0.0061 
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Table 3. The outlier detection efficiency of the time series model 
Weight function Miss rate False alarm rate 

Huber 0.0000 0.0010 
Hampel 0.0000 0.0030 
Andrews 0.0000 0.0018 

Tukey 0.0000 0.0021 
IGGIII 0.0000 0.0008 
Danish 0.0000 0.0029 

L1-norm 0.0000 0.0013 
 

Table 4. The outlier detection efficiency of the fusion model 
Weight function Miss rate False alarm rate 

Huber 0.0000 0.0366 
Hampel 0.0000 0.0423 
Andrews 0.0000 0.0353 

Tukey 0.0000 0.0379 
IGGIII 0.0000 0.0344 
Danish 0.0000 0.0423 

L1-norm 0.0000 0.0381 
From the above tables, it can be seen that the single epoch synchronized model has the largest miss 

rate and the fusion model has the largest false alarm rate. The time series model has the best 
successful rate among all the models. The results showed small difference on different weight 
functions, which can be neglectable. 

References 

[1] P. J. Huber, E. M. Ronchetti. Robust Statistics, Second Edition [M]. Hoboken, New Jersey: John 
Wiley & Sons, Inc., (2009). 

[2] Y. Sisman. Outlier measurement analysis with the robust estimation [J]. Scientific Research and 
Essays. (2010), 5(7): 668–678. 

[3] E. Gokalp, O. Gungor, Y. Boz. Evaluation of Different Outlier Detection Method for GPS 
Networks [J]. Sensors. (2008), 8(11): 7344–7358. 

[4] Y. Boz, E. Gokalp. Robust Estimation of the Outliers in GPS Baseline Components [C]. In 
Shaping the Change XXIII FIG Congress. Munich, Germany, October 8-13 (2006). 

[5] S. Hekimoglu. R. C. Erenoglu. Effect of heteroscedasticity and heterogeneousness on outlier 
detection for geodetic networks [J]. Journal of Geodesy. (2007), 81:137-148. 

[6] Y. Yang. Robust estimation of geodetic datum transformation [J]. Journal of Geodesy. (1999), 
73(5): 268–274. 

1810




