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Abstract. In order to improve the accuracy of feature extraction, a Multi-scale Fuzzy Entropy 
algorithm is proposed based on Entropy theory. The new algorithm combines the concept of Fuzzy 
Entropy and Multi-scale Entropy. Aimed at the shortage of Empirical mode decomposition (EMD), 
Index Energy is selected as evaluation index, and a new feature extraction method is designed to 
dispose vibration signal. Experiment shows that the new method can effectively distinguish 
different condition of rotor vibration signal and can significantly improve the effect of feature 
extraction. 

Introduction 
As the core technology of fault diagnosis, the quality of feature extraction directly influences the 

effect of pattern recognition. Hence, choosing a suitable method to extract feature information 
which can effectively reflect the signal’s innate-character becomes the key point of feature 
extraction’s field. Traditional time-frequency analysis method cannot obtain the feature information 
which contained in signals. Shannon putted forward the concept of Information Entropy in 1948 to 
describe the measurement of system’s disorder in microscopic particle and introduced to the field of 
information theory. With the development of entropy theory and wide application, Pincus put 
forward Approximate Entropy to analyze complexity in time series’ [1]. And Richman proposed the 
concept of Sample Entropy in 2000 [2]. As an improved algorithm, since the proposing of Sample 
Entropy, it immediately attracted extensive attention. Based on the concept of Sample Entropy, 
Scholar gave the concept of Fuzzy Entropy and Multi-scale Entropy. Fuzzy Entropy utilizes the 
pattern of exponential function’s fuzzily to dispose entropy’s mutation in the process of counting 
for using unit step function [3]. Multi-scale Entropy starts with different scales analysis, meanwhile 
avoiding the sole scale reflect serial information one-sided, and can dig the order’s deep 
information. 

Formation of Multi-scale Fuzzy Entropy 
For effectively distinguish the diversity in signal, we need to make the inherent difference 

maximize. After giving an overall analysis to the general entropy theories, we select the Fuzzy 
Entropy as basic technique for signal’s feature entropy extraction, and use Multi-scale analysis as 
reference to introduce Multi-scale Entropy to construct the Multi-scale Fuzzy Entropy. Utilizing 
Multi-scale Fuzzy Entropy to dispose the vibration signal in different condition and obtain the 
feature information, then compare the extraction effects in different scale to search the best analysis 
scale to furthest distinguish the weak change of complexity in different condition.  

Multi-scale Fuzzy Entropy concurrently has the character of Fuzzy Entropy and Multi-scale 
Entropy. So the counting process vastly fuses the operation characteristic of both. The calculated 
flow is as follow: 

(1) Disposing the signal with coarse graining, and combining with resemble tolerance r and 
embed mode dimension n to construct coarse vector. 
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In equation (1): λ stands for pulling scale factor, ordinary its value range greater than 1. If λ equal 
to 1, then the corresponding function x1(λ) stands for the original analytical array, in practical 
application always select ten above. 

 (2) Setting mode dimension n, and reconfiguring signal sequence. Obtain the vector quantity. 
( ) ( ) ( ) ( ){ } ( ) ( )0, 1 , , 1 , 1, 2, , 1Y i y i y i y i n y i i M n= + + − − = − +2                       (2) 

In equation (3): y0(i) is the average value of all elements in reconfiguration order. 
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(3) Defining absolute value of maximum D-value between vector quantity Y(i) and Y(j) as d[Y(i), 
Y(j)]： 
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(4) Introducing fuzzy function η(d[Y(i), Y(j)], s, l) to construct the similarity of vector quantity 
Y(i) and Y(j), the calculated mode 
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In equation (5): n stands for the gradient of exponential function’s boundary; r stands for the 
width of exponential function’s boundary. 

(5) Basing on similarity to formation the function φ(M, n, r), 
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(6) Adding the mode dimension to n+1 to formation a group of new vector array, and repeating 
the step of (2), (3) and (4). 
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(7) Using the reconfiguration array φ(M, n, r) and φ(M, n+1, r) to calculate Fuzzy Entropy. 
( ) ( ) ( ), , lim ln , , , 1,

M
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→∞
= − +                                     (8) 

In actual signal analysis, subjecting to the length of signal, it always takes advantage of 
estimating to calculate. 

( ) ( ) ( ), , ln , , ln , 1,FE M n r M n r M n rϕϕ = − +                                       (9) 

Selection of IMF based on the Index Energy 
In ideal condition, EMD can obtain Intrinsic Mode Function (IMF) which contains single 

frequency according to different time scale. However, in practical application, due to the end effect 
and mode mixing, the result of decomposition usually contains overmuch false component. So, in 
this situation, we not only can obtain signal’s inner real feature, but also can increase the calculated 
amount of feature extraction. In order to solve this problem, we have to effectively distinguish the 
real component and the false component before the feature extraction.  

In the viewpoint of signal analysis, time scale and energy which follows a time scale distribution 
is very important measurement index. Hence, it provides opportunity to judge signal in different 
time scale and frequency’s energy characteristic. Thereby, it can effectively accomplish the 
separation of the real component and the false component. For obtaining a group of feature vector 
quantity that could better reflect signal’s energy in different condition, we introduce the concept of 
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Index Energy. Combining with the process of EMD, we judges the original signal’s energy 
proportion in the IMF, the specific counting process is as follows: 
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In the equation (10): Ifi(j) stands for the IMF component’s energy coefficient; Ix(j) stands for the 
original vibration signal’s energy coefficient; Mt stands for IMF component’s data length; Nt stands 
for the original vibration signal’s data length; E(i) stands for corresponding component’s Index 
Energy. In the process of EMD, the length of IMF component’s and original vibration signal is 
equal. So we can find: 
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Combining with the expression of Index Energy, we can find that the richer signal’s feature 
information IMF contains, the bigger Index Energy is, and the more important of meaning is. 
What’s more, Index Energy is constructed through the inner dynamic relation between the signal in 
real-time monitoring and subsector. Hence, in some meaning, Index Energy is a process amount 
[4][5]. It provides condition for judging the information that contained in component dynamically.  

Achievement of feature extraction 
Selecting the proposed method to analysis vibration signal in different condition, flow chart of 

Multi-scale Fuzzy Energy extraction based on Index Energy is as follows. 
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Fig.1 Flow chart of Multi-scale Fuzzy Entropy extraction based on index energy 
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Test results 
Disposing the rotor vibration signal with the proposed method, different four condition of fault 

signal shown in Figure.2. Among them contains rub-impact failure, misalignment failure, looseness 
failure and normal condition. The analysis result of Multi-scale Fuzzy Entropy is shown in Figure.3. 

 
Fig. 2 Time domain waveform under rotor’s different four conditions 

 
Fig. 3 Multi-scale Fuzzy Entropy (MFE) analysis for rotor’s vibration signals with different 

condition 
Combining with Multi-scale analysis, we can effectively distinguish different condition of 

vibration signal. For going a step further to analysis the inner feature, we decide to carry out 
selecting the best scale factor. Calculating difference value of Entropy, thereby shows the difference 
of different condition. As shown in Tab.1, we can learn the best scale factor is 10. 
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Tab.1 Analysis for distinction degree of samples’ MFE difference 

Scale factor MFE1-MFE2 MFE2-MFE3 MFE3-MFE4 Sum of  
mean value SP1 SP2 SP3 SP1 SP2 SP3 SP1 SP2 SP3 

1 0.2728 0.3128 0.2902 0.1843 0.1874 0.1884 0.2670 0.2603 0.2704 0.7445 
2 0.1969 0.1933 0.2001 0.3342 0.3362 0.3201 0.1871 0.1837 0.1993 0.7169 
3 0.5810 0.6194 0.6025 0.1800 0.1936 0.1762 0.5008 0.4972 0.5106 1.2871 
4 0.5043 0.5099 0.5092 0.4472 0.4568 0.4622 0.1631 0.1643 0.1640 1.1270 
5 0.5968 0.6051 0.5933 0.2781 0.2817 0.2812 0.1164 0.1186 0.1166 0.9959 
6 0.6316 0.6854 0.6600 0.2360 0.2431 0.2364 0.3109 0.3313 0.3202 1.2183 
7 0.1325 0.1567 0.1446 0.4262 0.4283 0.4374 0.2460 0.2466 0.2325 0.8169 
8 0.0391 0.0277 0.0400 0.6076 0.5956 0.5969 0.1535 0.1685 0.1690 0.7993 
9 0.4031 0.4459 0.4221 0.6769 0.7120 0.7093 0.0923 0.0968 0.0920 1.2168 

10 0.4845 0.4925 0.4796 0.6558 0.6839 0.6756 0.1043 0.1283 0.1136 1.2727 
11 0.4130 0.4497 0.4249 0.5997 0.6225 0.6109 0.1252 0.1297 0.1269 1.1675 
12 0.2517 0.3094 0.2761 0.3832 0.3811 0.3732 0.1991 0.2098 0.2192 0.8676 
13 0.6748 0.7390 0.7151 0.3383 0.3430 0.3334 0.1419 0.1453 0.1575 1.1961 
14 0.5102 0.4963 0.5006 0.3148 0.3142 0.3132 0.1278 0.1334 0.1292 0.9466 
15 0.0635 0.0435 0.0524 0.3079 0.3064 0.3070 0.1106 0.1146 0.1132 0.4730 
16 0.0694 0.0351 0.0600 0.3051 0.3088 0.3056 0.0915 0.0923 0.0912 0.4530 

 
After selecting the best scale factor, we need to combine with the Index energy to search the fault 

information. Every condition we only list the first 11 IMF. The result is shown in Tab.2. Combining 
with the best scale factor, we can obtain the discrimination as shown in Tab.3. 

Tab.2 The IMF’s index energy and its normalization results in different conditions 

IMF 
Index Energy Normalization Energy 

Rub Mis Nor Los Rub Mis Nor Los 

IMF1 0.7654 0.8588 0.7251 0.9429 0.4372 0.4865 0.3978 0.5921 
IMF2 0.6164 0.4417 0.6335 0.2604 0.3514 0.2502 0.3475 0.1635 
IMF3 0.1610 0.2385 0.2465 0.1863 0.0912 0.1351 0.1352 0.1170 
IMF4 0.0662 0.0821 0.0928 0.0700 0.0380 0.0465 0.0509 0.0440 
IMF5 0.0407 0.0398 0.0452 0.0435 0.0017 0.0226 0.0248 0.0273 
IMF6 0.0300 0.0302 0.0278 0.0263 0.0169 0.0171 0.0152 0.0165 
IMF7 0.0270 0.0225 0.0150 0.0232 0.0142 0.0128 0.0082 0.0146 
IMF8 0.0159 0.0169 0.0131 0.0152 0.0091 0.0096 0.0072 0.0095 
IMF9 0.0122 0.0123 0.0083 0.0138 0.0063 0.0070 0.0046 0.0087 

IMF10 0.0083 0.0166 0.0051 0.0073 0.0053 0.0094 0.0028 0.0046 
IMF11 0.0109 0.0059 0.0105 0.0036 0.0067 0.0033 0.0057 0.0023 

 
Tab. 3 The first four IMFs’ Optimum Fuzzy Entropy(OFE) in different conditions 

Sample 

The best scale of MFE 
(IMF1,IMF2, 
IMF3,IMF4) 

Rub Mis Nor Los 

1 (3.3675,1.3856, 
1.1935,0.6772) 

(5.2623,2.0159, 
0.8048,0.5665) 

(1.4578,0.9547, 
0.6840,0.5007) 

(1.3454,0.6851, 
0.5553,0.4287) 

2 (3.3691,1.3895, 
1.1930,0.6737) 

(5.2585,2.0489, 
0.8089,0.5640) 

(1.4522,0.9563, 
0.6821,0.5113) 

(1.3265,0.6837, 
0.5625,0.4237) 

3 (3.3752,1.3895, 
1.1927,0.6827) 

(5.2562,1.9881, 
0.8111,0.5653) 

(1.4607,0.9646, 
0.6901,0.5068) 

(1.3117,0.6823, 
0.5597,0.4172) 

4 (3.3744,1.3879, 
1.1920,0.6753) 

(5.2617,1.9910, 
0.8196,0.5598) 

(1.4614,0.9519, 
0.6935,0.5165) 

(1.3277,0.6854, 
0.5629,0.4231) 

5 (3.3668,1.3907, 
1.1904,0.6742) 

(5.2589,2.0258, 
0.8219,0.5617) 

(1.4540,0.9573, 
0.6857,0.5044) 

(1.3238,0.6894, 
0.5417,0.4350) 
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6 (3.3775,1.3835, 
1.1859,0.6727) 

(5.2638,2.0811, 
0.8161,0.5702) 

(1.4688,0.9554, 
0.6927,0.5109) 

(1.3197,0.6946, 
0.5457,0.4393) 

7 (3.3513,1.3912, 
1.1905,0.6741) 

(5.2704,1.9847, 
0.8219,0.5715) 

(1.4543,0.9587, 
0.6888,0.5134) 

(1.3224,0.6945, 
0.5448,0.4326) 

8 (3.3577,1.3839, 
1.1882,0.6626) 

(5.2683,2.0216, 
0.8275,0.5694) 

(1.4627,0.9601, 
0.6894,0.5064) 

(1.3431,0.6828, 
0.5641,0.4328) 

9 (3.3701,1.3861, 
1.1850,0.6889) 

(5.2746,2.0581, 
0.8195,0.5583) 

(1.4582,0.9634, 
0.6926,0.5126) 

(1.3536,0.7023, 
0.5629,0.4409) 

10 (3.3629,1.3901, 
1.1859,0.6761) 

(5.2569,2.0466, 
0.8327,0.5614) 

(1.4704,0.9473, 
0.6738,0.5131) 

(1.3486,0.6937, 
0.5714,0.4368) 

 

Conclusion 
Combining with the theory of Entropy, we gave a deeply research on the method of feature 

extraction, and put forward a method of Multi-scale Fuzzy Entropy based on Index Energy. 
Utilizing it to deal with the rotor’s vibration signal, the result proves that the feature vector can 
effectively reflect the change of rotor’s condition. And the distinction degree is very obvious to 
catch the change of switching transients. 
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