

A Nearest Neighbor Searches(NNS) Algorithm for Fast Registration of
3D Point Clouds based on GPGPU

Fangfang Wu1, a, Fei Wang1, b, Peilin Jiang1, c, Chen Zhao1,d, Jianhua Cheng1, e

1Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
aemail: w3112390009@stu.xjtu.edu.cn, bemail: wfx@mail.xjtu.edu.cn,
 cemail: pljiang@mail.xjtu.edu.cn, demail: chenzhao@mail.xjtu.edu.cn,

eemail: cjh24680@stu.xjtu.edu.cn,

Keywords: Registration; ICP; NNS; K-d tree; GPU

Abstract. For a large set of data points, registration is time-expensive. In order to deal with this
problem, we propose an improved Nearest Neighbor Searches(NNS) algorithm for 3D point clouds
registration based on Graphic Processing Unit(GPU). In order to maximize the storage of data
points in the memory, we minimize the k-d tree element to decrease the consumption of memory.
We use left-balanced median sort algorithm to compute root node and partition left and right
sub-tree in the process of building k-d tree. During the search process, we use trim optimization to
delete the sub-tree branch far away from the query node to avoid a huge amount of invalid
computation. We use search stack to store search path, which decrease the computation.
Experimental results indicate that an average processing speed for GPU is 15 times faster than that
for Central Processing Unit(CPU) when the registration results are appropriate, and the acceleration
ratio improves significantly while the number of point clouds increases.

Introduction
Nearest Neighbor Searches(NNS) algorithm aims to find the point closest to a query point

among a set of n points. We measure distance in the Euclidean metric. The algorithm is commonly
used in the domain of computer vision especially point cloud registration. However, registration
algorithm with a huge amount of data consumes too long time.

Graphic Processing Unit(GPU) can be used for general purpose applications by using Compute
Unified Device Architecture(CUDA). In CUDA programming, GPU is regarded as a
parallel-processor that can execute a great number of threads simultaneously.

Traditional k-d tree-based NNS algorithm is difficult to be implemented on GPU because of its
recursive nature. We present an improved NNS registration algorithm on GPU based on Arya's
NNS algorithm. NNS algorithm plays an important role in computing correspondence of point
clouds registration [1]. Iterative Closest Point(ICP) algorithm proposed by Besl and Mackay(1992)
has been regarded as the most classic registration algorithm [2]. The algorithm iterates over three
steps: (1)Compute correspondence by finding the nearest point. (2)Calculate optimal rigid
transformation adopting Singular Value Decomposition (SVD) algorithm. (3)Transform the point
sets. We implement step one and step three of ICP algorithm on GPU. Experiments indicate that the
registration algorithm on GPU performs 15 times faster than that on CPU.

Related Work
The earliest GPU-based NNS algorithm was implemented by Brute Force(BF) method, in which

the nearest point of each query point is calculated in parallel. There are many researchers who take
advantage of high parallelism of BF method to accelerate NNS algorithm using CUDA. Ronzen et
al(2008) partitioned 3D point clouds into cells and used a heap sort to search for the nearest point
[3].

Compared with BF method, GPU-based NNS algorithm with advanced search structures works
better. Singh et al(2007) presented a photon mapping framework to fit NNS in the Single

International Conference on Intelligent Systems Research and Mechatronics Engineering (ISRME 2015)

© 2015. The authors - Published by Atlantis Press 2153

Instruction Multiple Data(SIMD) model, and used stack with k-d tree structure to search k nearest
neighbor [4]. Zhou et al(2008) built a breadth-first GPU k-d tree for NNS and applied it to photon
mapping and ray tracing [5].

GPU-based NNS algorithm is used to implement point clouds registration algorithm.
Acceleration of ICP registration by GPU has made a great achievement. Qiu et al(2008) developed
a GPU-accelerated nearest neighbor search algorithm for 3D point clouds registration and used a
fixed length queue to search nearest point. If the queue is full, new candidate are discarded.
Therefore, final result is an approximate nearest point not the true one [6]. Tamaki et al(2010)
proposed CUDA-based implementations of Soft-assign and Expectation-Maximization (EM)-ICP
for 3D point clouds registration. In order to overcome shortage of the memory on GPU, the EM-ICP
algorithm adopted randomly down-sampling method, which reduces the accuracy of registration
[7].

Computing correspondence consumes the majority time of ICP algorithm. We make a large
improvement on the basis of Arya's NNS algorithm to compute correspondence of ICP algorithm
and propose a GPU-based 3D point clouds fast registration algorithm. In this paper, we used a
left-balanced median sort algorithm, a k-d tree with minimum element, an improved priority search
method and the trim optimization approach. Experiments indicate that the efficiency of point clouds
registration is improved to a large extent and the accuracy of registration is high.

GPU-Based Fast Registration
ICP algorithm aims to find an optimal rigid transformation consisting of a rotation R and a

translation t, so that the shape point sets after transformation have minimum similarity measure with
the model point sets. The registration with large point sets is computationally expensive. We present
a GPU-based approach to accelerate ICP algorithm. See in Figure 1.

Fig.1. The GPU design scheme of ICP algorithm based on improved NNS

First, we construct k-d tree on the model point sets, then transfer it to the device terminal to
compute correspondence in parallel. Second, we compute centroids of the two matching point sets
by optimizing parallel reduction in CUDA and subtract their respective centroids. Then we compute
covariance matrix by CUBLAS library and transfer it to the host terminal to calculate R and t by
SVD algorithm. Third, we transfer the R and t to the device terminal to transform shape point sets.
Finally, we transfer the Euclidean distance error to the host terminal to determine whether interrupt
iteration. if the error is less than threshold, terminate the iteration. Otherwise recalculate the

2154

correspondence in the device terminal.

GPU-based Improved NNS Algorithm
The correspondence computation consumes the majority time of a sequential CPU-based ICP

algorithm. We improve Arya's NNS algorithm to compute correspondence of ICP algorithm and
make it GPU-friendly. The major approaches include a left-balanced median sort algorithm, a k-d
tree with minimum element, an improved priority search method and the trim optimization
approach. These technologies optimize the process of building and searching k-d tree.

Building Array-based K-d Tree
We construct a left-balanced k-d tree on the mode point sets and store it in an array. In order to

satisfy the coalescing of memory in CUDA, we use the Structure of Array(SoA). Figure 2 shows the
array-based left-balanced k-d tree. We use a left-balanced median sort algorithm to compute root
node and partition left and right sub-tree in the process of building k-d tree. In order to reduce the
memory consumption of parameters of each thread, we minimize the k-d-tree element by only
storing node value and its index in the model point sets. The split axis is cyclically selected in
dimension <x,y,z,x,y,z,…>. Child pointers are replaced by index relationship between array
elements(2i,2i+1).

Left-balanced median sort algorithm: First, calculate the left-balanced median position LMpos of
n points. Then pick the vale m of median position of n points to partition point sets. The points in
the left side is less than m and the right side is greater than m. If the position of m is equal to
LMpos, then m is regarded as root node and its left and right sub-sets were treated as left and right
sub-tree of the root. If not equal, the algorithm iterates into the child point sets which contains the
position LMpos.

() () ()1 1 1
2 2 2log 2 log 2 log 2

2 min 2 , 2 2 1
n n n

LMpos n
+ + +     − − −           = + − × + 

 
 (1)

Fig.2. Array-based left-balanced k-d tree

GPU-based K-d Tree Searching
We take advantage of GPU's multi-threaded processing ability to accelerate NNS algorithm. We

launch each point of shape point sets to a thread to compute nearest point in parallel.
The memory on GPU contains, from fastest to slowest, registers, shared memory, constant

memory and global memory. In order to increase the speed of data transmission, we store k-d tree
and shape point sets in the pinned memory. During the process of searching nearest point, k-d tree
remains unchanged and is used only for comparison. So we store it in the constant memory.
Because of the high accessing speed of the shared memory, we implement k-d tree searching in it.
However, the shared memory is scarce resource, we only store query points, the value on the split
axis of current k-d tree node compared with query point, and search stacks stored search path in the
shared memory. Local variables are stored in the registers. The remaining variables all are stored in
global memory, See figure 3.

During the searching process, we use the trim optimization to delete the sub-tree branch far away

2155

from the query node. Each k-d tree node is associated with a rectangle in real d dimensional space
and a hyper-plane orthogonal to the split axis. If the distance from query node to the current node's
partitioning hyper-plane is greater than the current minimum distance, then delete the sub-tree
branch of current node, otherwise push it into the search stack. Arya use a breadth-first search
algorithm to search the nearest point and store search path in the priority search queue. He uses the
heap sort algorithm in the priority search queue when new node is pushed into the queue, which is
computationally expensive. We use search stacks to store the search path and adopt a depth-first
search algorithm to query the nearest point. The depth-first search algorithm first explores the node
smaller to query point while storing the remaining one in the search stack. The minimum distance
decreases as we traverse k-d tree. So we can delete node far away from query node by the trim
optimization during the backtracking process, which avoids a huge amount of invalid computation.

Fig.3.The memory distribution of GPU-based NNS algorithm

Experiments

All experiments we performed on a quad-core processor. The configuration is shown in table 1.
Table 1: Configuration of processor

CPU GPU
Intel(R) Xeon(R) E5-1603 NVIDIA GeForce GTX660

 2.8 GHz 1.12 GHz
8 GB 2 GB

 Visual Studio 2010(64 bit) CUDA 5.5
The experimental data is four groups of Stanford bunny point sets. See in table 2.

Table 2: The experimental point sets
Type The number of points
bunny 10503 20417 30331 40256

1）The running time comparison of CPU-based ICP and GPU-based ICP：
For each group of point sets, we respectively implement the CPU-based ICP and GPU-based ICP

algorithm and compare their running time.
Table 3: Running time of bunny point sets

 10503 20417 30331 40256
iter time(s) iter time(s) iter time(s) iter time(s)

CPU-ICP 13 0.195000 16 0.456673 14 0.568258 15 0.944537
GPU-ICP 13 0.017295 16 0.030512 15 0.037422 19 0.049913

2156

 Fig.4.The speedup of ICP algorithm Fig.5. Convergence tests of ICP algorithm

Figure 4 shows the registration speedup(CPU/GPU) ratio of ICP algorithm. The improved ICP
algorithm runs faster on GPU than CPU. The algorithm's speedup ratio increase as the data size
grows(the speedup is the ratio between the running time of CPU-based ICP and that of GPU-based
ICP). Because the data transferring between CPU and GPU consumes much time when the number
of points is small. It weaken the acceleration effect. For a large number of point sets, the algorithm
can take full advantage of multi-thread resources to acquire a better acceleration.

2）The registration error comparison of CPU-based ICP and GPU-based ICP：
For each group of point sets, we respectively implement the CPU-based ICP and GPU-based ICP

algorithm and compare their error. The total error is the summation of the Euclidean distance
error of each point .

Table 4: Total error of bunny point sets
error bunny

10503 20417 30331 40256
CPU-ICP 0.000001 0.000000 0.005457 0.006248
GPU-ICP 0.000001 0.000000 0.005480 0.006248

Table 4 shows the matching accuracy of ICP algorithm based the improved NNS on GPU is
equal to that on CPU. Figure 5 shows the registration iteration error curve of 40256 point sets. We
can see the error monotonically decreases in the iterative process, which means good matching
accuracy. Figure 6 shows registration results of 20417 point sets.

(a) (b) (c)

 (d) (e) (f)
Fig.6. The registration results of GPU-based ICP algorithm. (a), (b) and (c) show the figure before

registration. (d), (e) and (f) show the figure after registration. (a) and (d) show the front view of
registration figure. (b) and (e) show the side view of registration figure. (c) and (f) show the detailed

registration figure.
2157

Conclusion
In this paper, we introduce a NNS-based fast point clouds registration algorithm on GPU. Our

implementation on NVIDIA GeForce GTX660 systems achieve a speedup of about 15 times
compared with Intel(R) Xeon(R) E5-1603 on average. In order to enhance the efficiency of search,
we propose an improved priority search method, which uses a search stack. We also adopt the trim
optimization approach for the efficient search. In addition, we introduce a left-balanced median sort
algorithm to accelerate building k-d tree. By minimizing the k-d tree element, we decrease the
consumption of memory.

Acknowledgement
In this paper, the research was supported by National High Technology Research and

Development Program of China (Project No. 2013AA014601) and National Science and
Technology Pillar Program (Project No. 2013BAH62F03-3).

References

[1] Arya S., Mount M. Algorithms for Fast Vector Quantization [C], IEEE Proceedings of Data
Compression Conference, IEEE Computer Society Press, 1993.381-390.

[2] Paul J. Besl, Neil D. McKay, A Method for Registration of 3-D Shapes [J], IEEE Transactions
on Pattern Analisys and Machine Intelligence, 1992. 239-256.

[3] Rozen T, Boryczko Alda W., GPU Bucket Sort Algorithm with Applications to
Nearest-Neighbor Search [C], Journal of the 16th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, 2008.

[4] Singh S., Faloutsos P., SIMD Packet Techniques for Photon Mapping [C], In: Proc.of the
IEEE/EG Symposium on Interactive Ray Tracing, 2007. 87–94.

[5] Zhou, K., Hou, Q., Wang, R., Guo B., Real-time KD-Tree Construction on Graphics Hardware
[P], ACM SIGGRAPH Asia 2008, 2008.10.

[6] Qiu D., May S., Nuchter. A., GPU-accelerated Nearest Neighbor Search for 3D Registration [C],
7th International Conference on Computer Vision Systems [C], 2009.194-203

[7] Tamaki T, Abe M, Kandea K. Softassign EM-ICP on GPU [C]. Proceedings of the 2010 1st
International Conference on Networking and Computing(IEEE2010), 2010.179-183.

2158

