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Abstract

This paper introduces a novel ensemble learning approach based on recurrent radial basis function
networks (RRBFN) for time series prediction with the aim of increasing the prediction accuracy.
Standing for the base learner in this ensemble, the adaptive recurrent network proposed is based
on the nonlinear autoregressive with exogenous input model (NARX) and works according to
a multi-step (MS) prediction regime. The ensemble learning technique combines various MS-
NARX-based RRBFNs which differ in the set of controlling parameters. The evaluation of
the approach includes a discussion on the performance of the individual predictors and their
combination.
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In learning temporal (and spatial) sequences
for predictions purposes, recurrent neural net-
works have attracted a lot of attention. There
exist a number of studies showing different neu-
ral architectures and relying on different learn-
ing models, i.e., supervised, unsupervised and
with reinforcement. While supervised learning
recurrent algorithms seem to be the most pop-
ular ones 14,8, unsupervised learning (i.e, clus-
tering) has witnessed increasing attention espe-
cially with the advent of self-organized maps and
vector quantization networks 2. Reinforcement
on the other hand has been applied for time se-
ries in a smaller number of studies 17.

Temporal relationship often are captured us-
ing feedback connection in neural networks.
This has resulted in a number of architectures

and have been classified in 3 main groups 16.
globally recurrent networks 14, locally recurrent
networks 8 and nonlinear autoregressive with ex-
ogenous input networks (NARX networks) 18.
In the first class, hidden nodes provide a context
(hidden states) and are globally fed back as new
input. In locally recurrent networks, the feed-
back connections are allowed only from neurons
to themselves (looped neurons). In the NARX
architecture, the output of the network are fed
back to the input layer.

In this paper we use a new adaptive NARX
recurrent radial basis function network as a pro-
totypical base learner for an ensemble learning
approach. This neural network is called a MS-
NARX-RRBFN standing for multi-step NARX-
based recurrent radial basis function network.
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As will be described in Sec. 1, the aim is to
construct parsimonious and flexible radial ba-
sis function networks. To achieve such a gaol,
the proposed neural network is equipped with
multi-step-ahead prediction mechanisms and is
totally self-adaptive in the sense that most of the
parameters defining its architecture are learned
too.

In addition to the multi-step-ahead predic-
tion strategy endowing the radial basis function
network during training, to further enhance the
prediction accuracy, a neural ensemble (commit-
tee) predictor is devised. This ensemble is gen-
erated by varying the MS-NARX-RRBFN allot-
ting different settings.

Ensemble learning has recently attracted
much attention due to its ability to perform bet-
ter than single learning model and to discover
regularities in dynamic and non-stationary data.
Ensemble methods aim at leveraging the per-
formance of a set of models to achieve better
prediction accuracy than that of the individual
models. While in some literature sources, au-
thors refer to individual models as weak learn-
ers, it is however necessary to have them as com-
petent as possible 5. This is the approach taken
in this paper. We aim at obtaining a set of
competent complementary decision makers. It
is worth stressing here to note that due to the
non-stationarity characterizing time series, pre-
diction by means of committee learners is indeed
a very appealing approach.

The rest of this paper is organized as follows.
Section 1 describes the base learner used in this
ensemble predictor. Section. 2 introduces the
ensemble predictor. In Sec. 3, the evaluation of
the proposed approach is discussed.

1. Recurrent Multi-Step RBFN

Like multilayer perceptron, RBF neural net-
works are function approximators 19 able of
learning to map a given input set to its corre-
sponding output set. In a RBF network, the hid-
den units form a set of functions that compose a
random basis for the input patterns, hence the

name of radial basis functions 12. They serve to
perform a nonlinear transformation of the pat-
terns into a high-dimensional space in order to
tackle the problem of pattern separability. An
interesting development stage of RBFNs is reg-
ularization that allows to enhance the general-
ization of the network via interpolation mecha-
nisms in the high-dimensional space 20.

This generalization capability, however, de-
pends largely on the appropriateness of the
model’s parameters, i.e. centers, number, form,
and width of the radial basis functions and the
learning algorithm used to train the network.
As to this latter aspect, several RBFN training
schemes have been developed. The known ones
include gradient descent and orthogonal least
square optimization 12. Such training schemes
may involve learning the RBF parameters also.
In fact, the centers of the radial basis functions
can be determined either by clustering (and vec-
tor quantization) or can along with the radial
basis widths be part of the training stage.

The number of radial basis functions depends
on the data and should be carefully selected. It
can either a priori fixed and remains static or dy-
namically set (i.e., centers are added or deleted)
in the course of training. To avoid such a prob-
lematic, a criterion that defines the optimum
number of basis functions for the RBF networks
has been introduced 1. Such a criterion relies on
Steins unbiased risk estimator to derive an an-
alytical criterion for assigning the appropriate
number of basis functions.

Moreover, there exists a set of basis func-
tions that can be used and for which the inter-
polation can be achieved. These include multi-
quadratic, Gaussian, inverse multi-quadratic,
thin-plate spline, cubic and linear. These func-
tions have been compared on time series 11. The
authors recommend to try various basis func-
tions with their range of widths to find an opti-
mal solution.

Motivated by these considerations about
the network’s architecture and the diversity of
heuristics used to estimate the network’s param-
eters as discussed earlier, it seems very appeal-
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ing to use ensemble learning to face such diver-
sity and tuning problems. The ensemble method
we propose in this paper relies on the NARX
architecture of recurrent neural networks. Com-
pared to globally recurrent networks, in NARX-
based recurrent networks the states of the net-
work are obtained from the output layer not
from the hidden layer. In terms of complexity,
NARX models are less dense since the size of
hidden layer is larger than that of the output
layer. In the case of time series, the output layer
consists of only one neuron.

Fig. 1. Recurrent radial basis function with multi-
step learning

NARX-RRBFN relies on the nonlinear au-
toregressive model with exogenous inputs that
is described by:

ŷ(t+1) = F (x(t+1), · · · , x(t−Dx), y(t), · · · , y(t−Dy))
(1)

where x(t) and y(t) are the input and output of
the non-linear system at time t, F is a nonlinear
function, Dy and Dx represent the order of the
model. For time series, this model is reduced to:

ŷ(t+ 1) = F (y(t), y(t− 1), · · · , y(t−D)) (2)

where D is the size of a time window. In other
terms, the time series behavior can be captured
by expressing the value y(t + 1) as a function
of the D previous values of the time series,
(y(t) · · · (y(t−D)). Syntactically such behavior
corresponds to one-step prediction which “fits”
the last D samples to estimate the current value
at time t. However, such a prediction scheme
may not provide enough information especially
if one wants to anticipate the behavior of the
time series evolution.

To overcome this, NARX-RRBFN can be en-
hanced by embedding a multi-step predictive
model that offers the possibility to handle com-
plex dynamics over a long period of time. The
idea underlying multi-step predictive model, as
a generalization of the one-step model, is that
predicting at time t + 1 requires to perform
p prediction steps ahead into the future, i.e.
ŷ(t + 1), · · · , ŷ(t + p + 1). Hence, the goal is to
approximate the function F such that the model
given by Eq. 2 can be used as a multi-step pre-
diction scheme.

The mathematical formulation of multi-step
prediction is as follows:

ŷ(t+ p+ 1) = F (ŷ(t+ p), · · · , ŷ(t+ 1), y(t), · · · ,
y(t−D + p)) (3)

where p is called prediction horizon. Basi-
cally this formulation can be unfolded as follows:



ŷ(t+ 1) = F (y(t), · · · , y(t−D))
ŷ(t+ 2) = F (ŷ(t+ 1), y(t), · · · , y(t−D + 1))

· · · = · · ·
ŷ(t+ p+ 1) = F (ŷ(t+ p), · · · , ŷ(t+ 1),

y(t), · · · , y(t−D + p))
(4)

which suggests that at any time t, predic-
tions have to be made based on the time interval
[t+1, t+p+1] taking D samples as input. Such
input is split into two parts: context input and
external input. The context input stands for
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Fig. 2. Unfolding the multi-step NARX-RRBFN

the internal states of the network which are ob-
tained from the delayed network output. They
memorize the context of the current input by
recalling information about the past. This con-
text provides the network the ability to handle
long-term predictions. Indeed for the sake of
long-term predictions, the multi-step approach
adopted here allows the network to take future
sample change over a prediction horizon into ac-
count. The external input represents the last
samples seen by the network preceding the cur-
rent time t. Initially these samples act as a
window that represents the historical trend ob-
tained directly from the data. This means that
the predicted network output ŷ(t+ 1) at instant
t+ 1 is sent back as input for the next step pre-
diction. The remaining input part corresponds
to the input values shifted ahead by one sample.
Graphically the multi-step NARX-RBFN is por-
trayed in Fig. 1 and its unfolding architecture is
portrayed as a cascade of RBFNs in Fig. 2.

Basically the function F in Eq. 3 has the form
of

ŷ(t+ p+ 1) = F (ŷ(t+ p), · · · , ŷ(t+ 1), y(t), · · · ,
y(t−D + p),Θ) (5)

where Θ is the parameter set of the model
(Ci,Σi,W ) which stands for the centers and

widths of the radial basis functions and the
weights between the hidden and the output lay-
ers.

To define Θ = {vj , σj , wj}, the following per-
formance index has to be minimized:

Q(t+ 1) =
1
2

p∑
i=1

(y(t+ i+ 1)− ŷ(t+ i+ 1))2

(6)
standing for the multi-step prediction error.

Since, the present work is about adaptive
recurrent radial basis function network, the
weights, centers, and widths of the radial basis
functions are updated using the following gradi-
ent descent rules:

∂Q

∂Θ
:
∂Q

∂vj
,
∂Q

∂σj
,
∂Q

∂wj
(7)

Recall that the output node is a linear combina-
tion of a set of basis functions:

ŷ(xi) =
H∑

j=1

wjφj(xi) (8)

where xi is the input vector with elements xim

(where m is the dimension of the input vec-
tor); vj is the center vector of the basis function
φj(.) with elements vji; wj are the output layer’s
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weights. The hidden nodes equipped with the
basis function φj(xi) are nonlinear, while those
of the output are linear.

The radial basis function takes different
forms which we will use in ensemble learning
approach intended in this study. These forms
are shown in Tab. 1.

Table 1. Radial basis functions

Function Form

Gaussian e
(−
||y−vj ||

2

2σ2
j

)

Multiquadratic (||y − vj ||2 + σ2
j )

1
2

Inverse multiquadratic (||y − vj ||2 + σ2
j )−

1
2

Cubic ||y − vi||3

For the sake of simplicity we omit the index
(t+1) from Eq. 7. Therefore, ŷ(t+ 1 + i) (resp.
y(t+ 1 + i)) will be written ŷi (resp. yi). Then
the following holds:

∂Q

∂wj
=
∂Q

∂ŷi

∂ŷi

∂wj
= −(yi − ŷi)φj (9)

Hence, the weight can be updated as follows:

wj = wj − η1
∂Q

∂wj
= wj + η1(yi − ŷi)φj (10)

To update the centers we need to compute:

∂Q

∂vj
=
∂Q

∂ŷi

∂ŷi

∂φj

∂φj

∂vj
= −wj(yi − ŷi)

∂φj

∂vj
(11)

leading to the following update rule:

vj = vj − η2
∂Q

∂vj
= vj + η2wj(yi − ŷi)

∂φj

∂vj
(12)

The last update operation is that of the
width which requires:

∂Q

∂σj
=
∂Q

∂ŷi

∂ŷi

∂φj

∂φj

∂σj
= −wj(yi − ŷi)

∂φj

∂σj
(13)

leading to the following update rule:

σj = σj − η3
∂Q

∂σj
= σj + η3wj(yi − ŷi)

∂φj

∂σj
(14)

The MS-NARX-RRBF learning algorithm
consists of the steps shown in Alg.1 For a partic-
ular base learner, the architecture of the RRBF
is kept fixed but the input layer is dynamic. Just
recall that at time t, the algorithm must predict
the time series values at instants t + 1, · · · , t +
p+1 during which the number of external input
nodes decreases from D + 1 to D + 1 − p while
the number of context neurones increases from
0 to p. Thus, initially the number of context
nodes is 0 and the external nodes correspond to
the input indexed by t, · · · , t−D. Generally, at
time t + i to predict the future t + i + 1th time
series sample, the context nodes receive output
corresponding to the predictions realized in in-
terval [t+1, t+1+ i−1 = t+ i] (i.e, the number
of context nodes is (t + i) − (t + 1) = i − 1,
whereas the external input nodes correspond to
the time series samples indexed by time interval
[t −D + i − 1, t] (since the window is of length
D + 1). Note that to learn the last p training
samples of the time series, the number of con-
text nodes will not exceed T − i (since t+ i 6 T
must hold, where T is the size of the training
data). On the other hand, in this study p is
set to value less D + 1, so that we have at least
one external input, otherwise all neurons in the
input layer will be context nodes.

2. Ensemble Learning

Radial basis function neural networks are uni-
versal non-linear function approximators with
a controllable complexity. They are known for
their prediction power. However, due to the di-
versity and the definition range of their param-
eters, the performance of these neural networks
may vary strongly. To alleviate the effect of pa-
rameter setting, it seems appealing to combine
in a symbiotic way several predictors. The idea
is that even if the performance of one or few neu-
ral networks may not be that much satisfactory,
the ensemble of the algorithms can still predict
the correct output. Usually, when the task is
relatively hard, multiple predictors are used fol-
lowing the conquer-and-divide principle 15.
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Ensemble learning has been mostly applied
for classification problems. However, recently a
certain number of studies propose their applica-
tion for time series forecasting problems.

For instance, an ensemble learning based on
feedforward neural networks has been proposed
in Ref. 13 for time series forecasting. In Ref. 22,
the ensemble combines radial basis function net-
works and the Box-Jenkins models. In Ref. 3,
a combination genetic classifiers is proposed for
predicting stock indexes, while in Ref. 21, a hy-
brid combination of neural networks and the
ARIMA model is applied for time series forecast-
ing. In Ref. 10, an ensemble of Elman networks
combined by Adaboost is proposed for predict-
ing drug dissolution profiles. Similar work has
been investigated in Ref. 4 relying on Adaboost
and its variants such as Adaboost.R proposed in
Ref. 9.

It is important to note that most of the stud-
ies rely on one scheme that is classifier combi-
nation trained on different data sets. In this
scheme several classifiers, each trained on ran-
domly generated sets (re-sampling from a larger

training set) are combined to perform the classi-
fication or regression task. These include stack-
ing 24, bagging 6 and boosting 9.

In this study we rather focus on a different
scheme that is combination of different classi-
fiers 15,7. According to this scheme, the classi-
fier ensemble contains several classifiers of differ-
ent types (neural networks, decision trees, etc.),
of different parameters (e.g. in multi-layer neu-
ral networks: different number of hidden lay-
ers, different number of hidden neurons, etc.),
or trained using different initial conditions (e.g.
weight initialization in neural networks, etc.)
The application of such scheme is not well stud-
ied in the context of time series. For instance,
in Ref. 7, an ensemble learning model using the
fuzzy k-nearest neighbor classifier as a base clas-
sifier is proposed. K-nearest neighbor classifier
is also used in Ref. 23 but combined with multi-
layer perceptron, nearest trajectory models and
some polynomial models.

In our study we focus on recurrent radial ba-
sis functions adapted to the NARX architecture
and working in a multi-step prediction regime
shown in Alg.1 This ensemble of recurrent neural
networks are mainly diversified according to the
architecture, type of radial basis function, the
initialization of the weights, and the initial po-
sition of the radial basis functions (see Tab. 2).

Table 2. Diversity criteria

Parameter Value set
1- Learning {Gradient descent}
2- Number of RBFs {Fitting mixture

of Gaussians using
EM)}

3- Type of RBFs {Multi-quadratic,
Gaussian, inverse
multi-quadratic,
cubic}

4- Width of RBFs {Gradient descent}
5- Center of RBFs {Gradient descent}
6- RBFN Architecture {Globally recur-

rent}

As already mentioned, there exist many ways
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the individual NARX-RBFFN can be combined
using various rules: product rule, sum rule, aver-
age rule, max rule, and min rule, voting rule. In
the present study, we consider the rules shown
in Tab. 3.

Table 3. Combination rules

Rule Expression

Average Rule Oj(x) = 1
N

∑N
i=1O

j
i (x)

Max Rule (optimistic) Oj(x) = maxN
i=1O

j
i (x)

Min Rule (pessimistic) Oj(x) = minN
i=1O

j
i (x)

3. Numerical Simulations

3.1. Benchmarks

In this study, we will rely on two major data
sets to evaluate the proposed approach. These
are the sunspots and the chaotic Mackey-Glass
time-series datasets. The former contains the
yearly number of dark spots on the sun from
1700 to 1979. The time series has a pseudo-
period of 10 to 11 years. In many studies, the
training set includes the time series from 1700 to
1920, while the testing set consists of two sub-
sets, 1921-1955 (test1) to be used here and 1956-
1979 (test2). The chaotic Mackey-Glass time-
series are generated by the following nonlinear
differential equation:

dx(t)
dt

= −0.1 ∗ x(t) +
0.2 ∗ x(t− τ)
1 + x10(t− τ)

(15)

The initial conditions used in our test bench are
set as x(0) = 0.8 and t = 17. These are set so
in order to conduct a comparative study against
other approaches using the same benchmarks.

3.2. Experiments

To assess the proposed approach, we study two
aspects: (i) the prediction accuracy of the indi-
vidual networks, (ii) the accuracy of their combi-
nation following the the four types of radial basis

functions on both data sets: the sunspots and
the chaotic Mackey-Glass time-series. For the
sake of the evaluation, the root mean squared
error (RMSE) measure is used to quantify the
goodness-of-fit. It is given by:

RMSE =

√∑N
i (y(i)− ŷ(i))2

N
(16)

Fig. 3. Mackey-Glass time series

Fig. 4. Sunspot time series

Before starting the evaluation of each of the
individual NARX-RBFNN, it is important to
check the effect the key parameters that char-
acterize the proposed NARX architecture. Ba-
sically, these parameters include the time win-
dow size (D) used for training the networks and
the prediction horizon (p), and the number of
radial basis functions. Figures 5 and 6 show the
effect of the two parameters on the prediction
root mean square error for both data sets.
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Fig. 5. The effect of window size

Fig. 6. The effect of the prediction horizon

The observed trend from these figures is that
for the sunspot time series, small window size
is preferred. In fact, when D = 3, a least root
mean square error is obtained. In the case of
Mackey glass data set, there is no clear trend
window size, though larger sizes seem to be pre-
ferred. On the other hand, small size of the pre-
diction horizon is preferred for both data sets.
These results are consistent with the variability
of time series. Indeed, the variability of Mackey-
glass, that is 0.0556, is far smaller than that of
sunspot (1554.20). Therefore, it is important to
set the window time in the case of sunspot also
smaller than that applied to the Mackey-glass
time series.

This experiment has allowed to estimate the
near-optimum D and p (in a certain range of
values). In the next experiments, we will con-
sider Dsunpot = 3, DMackey = 9, psunpot = 2, and

pMackey = 2.
On the other hand, to find the optimal num-

ber of radial basis functions used by the neural
networks, we have used the Bayesian Informa-
tion Criterion (BIC) to judge the statistical sig-
nificance of a number of inspected finite mixture
models. We do that by relying on the expecta-
tion maximization algorithm. The highest BIC
value corresponds to the optimal number of ra-
dial basis function.

As expected, the BIC increases as the num-
ber of clusters increases. However, a significant
increase is obtained after setting the number of
clusters to 48 in the case of Mackey glass data
and 56 for the sunspot data. This has also been
noticed when computing the root mean square
error as shown in Figs. 7 and 8 for the case of
Gaussian radial basis function as an illustrative
example. Therefore, we have considered 60 and
50 clusters for sunspot and Mackey glass respec-
tively for the Gaussian function. Then for the
quadratic, inverse multiquadratic and cubic the
number has been set to 140, 120 and 240 based
on preliminary experiments and guided by the
study in Ref. 11.

Fig. 7. The effect of cluster number - sunspot

Fig. 8. The effect of the cluster number - Mackey
glass
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Applying the set of NARX-RBFNNs under
the optimal conditions (i.e., optimal number of
radial basis functions, size of the time window,
size of the prediction horizon) on the training
data sets, we obtain Figs. 9 and 10. The re-
sults of both the training and testing show a
very good fit as explicitly portrayed in Tab. 4.
Despite the high accuracy, it is easy to note that
the networks are less accurate on the testing
data than on the training set.

Fig. 9. Training the individual NARX-RBFNNs -
sunspot

Fig. 10. Training the individual NARX-RBFNNs -
Mackey glass

Now testing the set of NARX-RBFNNs on both
data sets allow to appreciate more the capability
of the individual classifiers. Figure 11 and 12
show the testing results. While in the case of the
sunspot data, the classifiers perform very well,
in the case of Mackey glass, the performance was
of lesser quality.

Fig. 11. Testing the individual NARX-RBFNNs -
sunspot

Fig. 12. Testing the individual NARX-RBFNNs -
Mackey glass

The combination of the four NARX-
RBFNNs according to the combination rules
portrayed in Tab. 3 yields the results shown in
Tab. 4 with respect to both data sets. The accu-
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Table 4. Combining the NARX-RBFNNs (RMSE)

Sunspot Mackey Glass
Train Test Train test

Basis functions

Gaussian 0.05101960 0.03551478 0.00080740 0.00093712
Multiquadratic 0.05052722 0.03695943 0.00081461 0.00101498
Inverse multiquad. 0.05141011 0.03653765 0.00087726 0.00109476
Cubic 0.05151698 0.03792756 0.00081178 0.00110873

Combination
Max rule 0.04897958 0.03681168 0.00085305 0.00107847
Min Rule 0.05276362 0.03742993 0.00085088 0.00108931
Average 0.04723346 0.03521505 0.00070992 0.00077453

racy of the ensemble is much higher compared
to each of the individual predictor. The aver-
age rule is the best combination rule. Compar-
ing the individual NARX-RBFNNS on these two
particular time series and given the differences
in the accuracy values, it is not clear enough to
state which radial basis function produces more
accurate fitting.

4. Conclusion

The present paper deals with a new method of
time series predictions based on multiple pre-
dictors. Each of these is a multi-step nonlin-
ear autoregressive with exogenous input model
(NARX) radial basis function network. Relying
n two time series, the experiments have shown
that the combination improves the prediction
accuracy. However, there are many other issues
that will be studied in the future such as the dy-
namic evolution of the networks’ structure, that
is the number of RBFs is automatically learned
and weighting the contribution of the networks
in the ensemble.
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