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Abstract 

The Negative Selection Algorithm (NSA) is a kind of novelty detection method inspired by the biological self/nonself 

discrimination principles. In this paper, we propose two new schemes for the detectors re-editing and censoring in the 

NSA. The detectors that fail to pass the negative selection phase are re-edited and updated to become qualified using 

the Differential Evolution (DE) method. In the detectors censoring, the qualification of all the detectors is evaluated, 

and only those appropriate ones are retained. Prior knowledge of the anomalous data is utilized to discriminate the 

detectors so that their anomaly detection performances can be improved. The effectiveness of our detectors re-editing 

and censoring approaches is examined with both artificial signals and a practical bearings fault detection problem. 

Keywords: artificial immune systems, negative selection algorithm, differential evolution, anomaly detection, fault 

detection.  

1. Introduction 

Natural immune systems are complex and enormous 
self-defense systems with the remarkable capabilities of 
learning, memory, and adaptation [1]. Artificial Immune 
Systems (AIS), inspired by the natural immune systems, 
are an emerging kind of soft computing methods [2]. 
With the features of pattern recognition, anomaly detec-
tion, data analysis, and machine learning, the AIS have 
recently gained considerable research interest from dif-
ferent communities [3]. As an important constituent of 
the AIS, Negative Selection Algorithm (NSA) is based 

on the principles of the maturation of T cells and 
self/nonself discrimination in the biological immune 
systems. It was firstly developed by Forrest et al. in 1994 
for the real-time detection of computer viruses [4]. 
During the past decade, the NSA has been widely ap-
plied in numerous interesting engineering areas, e.g., 
networks security [5] and milling tool breakage detec-
tion [6]. A comprehensive theoretical analysis of the 
NSA is made in [7], and it is found to have several 
drawbacks [8]. As we know, the NSA detectors are first 
generated in a random manner, and undergo the so-called 
‘negative selection’ process thereafter. Only the detec-
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tors that do not match the self are selected for the anom-
aly detection, and those unqualified ones will be elimi-
nated. However, practical generation and implementa-
tion of the detectors can be rather costly. Therefore, how 
to reuse the unqualified detectors that are already gener-
ated is an important issue. Another shortcoming of the 
original NSA is that it is difficult if not impossible to 
explicitly embed the prior information of the novelty to 
be detected into the detectors selection phase. In this 
study, we present a Differential Evolution (DE)-based 
detectors re-editing scheme. A novel method of utilizing 
the characteristics of the anomalous data for censoring 
the NSA detectors is also explored. 

The remainder of this paper is organized as follows. We 
introduce the essential principle of the NSA in Section 2. 
The detectors re-editing and censoring approaches are 
proposed and discussed in Sections 3 and 4, respectively. 
We explain in details how to employ the DE method to 
re-edit the unqualified NSA detectors as well as utilize 
the domain knowledge to censor the coarse detectors. 
Simulations of three numerical examples of artificial 
signals and bearings fault detection are made in Section 
5 for examining our detectors re-editing and censoring 
scheme. Finally, in Section 6, we conclude the paper 
with some remarks and conclusions.  

2. Principle of Negative Selection Algorithm 

It is well known that the natural immune system is an 
efficient self-defense system that can protect the human 
body from being affected by foreign antigens or patho-
gens [1]. One of its most important functions is pattern 
recognition and classification. In other words, the bio-
logical immune system is capable of distinguishing the 
self, i.e., normal cells, from the nonself, such as bacteria, 
viruses, and cancer cells. This capability is mainly 
achieved by two different types of lymphocytes: B cells 
and T cells. Both the B cells and T cells are produced in 
the bone marrow. However, for the T cells, they must 
pass through a negative selection procedure in the thy-
mus thereafter. Only those that do not match the self 

proteins of the body will be released out to circulate. The 
remaining others are eventually destroyed there, which 
can actually prevent our immune system from mistak-
enly attacking the body’s own proteins.  

The NSA is inspired by the aforementioned T cells 
maturation mechanism of the biological immune system, 
as shown in Fig. 1. This approach can be conceptually 
described as follows. Defining the self, we first collect a 
data set containing all the representative self samples. 
Next, the candidate detectors are randomly generated, 
and compared with the self set. Note that like the above 
negative selection of the T cells, only those detectors that 
do not match any element of the self sample set are re-
tained. Let [ ]Lxxx ,,, 21 L  and  be two 

real-valued vectors denoting a self sample and a candi-
date detector, respectively, where  is their common 
order. The matching degree  between  
and 

[ ]Lwww ,,, 21 L

L
d [ ]Lxxx ,,, 21 L

[ ]Lwww ,,, 21 L  can be calculated based on the 

Euclidean distance: 

 ( )∑
=

−=
L

i
ii wxd

1

2 .             (1) 

d  is then compared with a preset threshold λ , and the 
detector matching error  is obtained: E

λ−= dE .                (2) 
If , detector 0>E [ ]Lwww ,,, 21 L  fails to match self 
sample [ ]Lxxx ,,, 21 L . If [ ]Lwww ,,, 21 L  does not match 

all the self samples, it will be included in the detector set. 
On the other hand, if , we consider that 0≤E
[ ]Lwww ,,, 21 L  matches [ ]Lxxx ,,, 21 L , and it is, there-

fore, rejected. After a certain number of qualified de-
tectors have been generated by such a negative selection 
procedure, they are used to detect the nonself/novelty in 
the incoming samples. That is, when a new sample 
[ ]Lxxx ′′′ ,,, 21 L  matches [ ]Lwww ,,, 21 L , the existing 

anomaly is detected.  
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Fig. 1. Negative Selection Algorithm (NSA).  

Various types of the real-valued NSA have been studied 
so far. For example, Ji and Dasgupta propose a variant 
NSA on the basis of variable-sized detectors (V-detectors) 
[9]. In the V-detectors NSA, each self sample has a vi-
cinity (self radius). A V-detector is randomly positioned, 
and its radius is dynamically changed until it reaches the 
margin of the nearest self sample. Stibor et al. compare 
the V-detectors NSA with the Bayesian classification 
method and one-class Support Vector Machine (SVM) in 
the anomaly detection [10]. The performance of the 
V-detectors NSA is discovered to be sensitive to several 
parameters, such as the self radius.   

Different from the above real-valued NSA, there are 
other shape-spaces and matching rules-based NSA [2]. 
The r-contiguous [11] and r-chunk [12] matching rules 
are usually used in the Hamming shape-space, where the 
self/nonself samples and detectors are represented by 
binary/character strings. For the r-contiguous matching 
rule, a sample and a detector match, if at least r con-
tiguous bits/characters of them are identical. For exam-
ple, detector [0 1 1 0 1 1] matches sample [1 1 1 0 0 1], if 
r=3. The r-chunk matching rule is actually a generaliza-
tion of the r-contiguous matching rule, which works as 
follows: a sample and a detector match, if a position 
exists, from where all the bits/characters of these two are 
identical over a sequence length r. The r-chunk matching 
rule can achieve a better matching performance than that 
of the r-contiguous matching rule [12]. However, both of 
them cause undetectable elements (‘holes’) in the 
Hamming shape-space. The ‘holes’ are the self samples 
not available in the detectors generation phase. As a 
matter of fact, the generation of the r-contiguous detec-

tors can be linked to the well-known k-CNF satisfiability 
problem [13]. It has been proved that the Hamming 
shape-space and r-chunk matching rule are only appro-
priate for the anomaly detection in the low-dimension 
cases [8].  

Conventional NSA has the shortcoming of inefficiency 
in the detectors generation [14]. That is to say, a lot of 
randomly generated detectors need to be discarded be-
fore the required number of suitable ones are obtained 
[8]. Several modified versions of the NSA have been 
investigated during the recent years [15]-[18]. Never-
theless, most of these algorithms just neglect the re-use 
of the unqualified detectors, and they cannot fully utilize 
the prior domain information of the anomalous data. We 
propose the following detectors re-editing and censoring 
schemes for the NSA to achieve improved anomaly de-
tection performances.  

3. Detectors Re-editing in Negative Selection Algo-
rithm 

A. Differential Evolution Method 
The Differential Evolution (DE) method is a robust 
population-based optimization technique firstly pro-
posed by Storn and Price [19]. The principle of the DE is 
similar to that of other evolutionary programming 
strategies, such as the Genetic Algorithms (GA) [20]. 
However, the unique idea of the DE is that it generates 
new chromosomes by adding the weighted difference 
between two chromosomes to the third one. If the fitness 
of the resulting chromosome is better than that chromo-
some, this newly generated chromosome replaces the 
one with which it is compared. The simplest DE can be 
explained as follows. Suppose there are three chromo-
somes, , , and , in the current popula-
tion, as shown in Fig. 2. A trial update of , 

)(1 kr )(2 kr )(3 kr
)(3 kr

)1(3 +′ kr , is given: 
[ )()()()1( 2133 krkrkrkr −+ ]=+′ λ ,        (3) 

where λ  is a pre-determined weight. In order to further 
increase the diversity of the chromosomes, a ‘crossover’ 
operator is employed to generate  by ran-)1(3 +′′ kr
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domly combining those parameters of  and 
 together. If  yields a higher fitness 

than , we get: 

)(3 kr
)(3 kr′ )1(3 +′′ kr

)(3 kr
)1()1( 33 +′′=+ krkr .            (4) 

Otherwise,  is eliminated, and the above itera-
tion procedure will restart.  and  are usually 

randomly selected from the population, and should be 
mutually different from each other. Apparently, the up-
date of the chromosomes in the DE is similar to the 
crossover operator of the GA. The difference between 
two chromosomes is an estimation of the gradient in-
formation in that zone, where both chromosomes belong 
to. The DE can be considered as a gradient de-
scent-based random search method. Compared with the 
GA, it has the advantages of algorithm simplicity and 
optimization efficiency. Therefore, we apply the DE in 
re-editing the unqualified NSA detectors so as to reduce 
the overall cost of detectors generation.  

)1(3 +′′ kr
)(1 kr )(2 kr

)(1 kr

)(2 kr

)(3 kr

)()( 21 krkr −

)1(3 +′ kr
[ ])()( 21 krkr −λ

 

Fig. 2. Principle of Differential Evolution (DE) method. 

B. Detectors Re-editing in Negative Selection Algorithm 
As discussed above, the unqualified detectors are always 
eliminated in the NSA, and new detectors are continu-
ously generated until a given number of detectors are 
available. Unfortunately, in practice, the generation of 
detectors could be intensive with regard to both cost and 
time. Hence, re-editing existing unqualified detectors is 
sometimes more economical than generating fresh de-
tectors, if the re-editing technique employed is simple 
and efficient. Our DE-based NSA detectors re-editing 
scheme is illustrated in Fig. 3. To simplify the presenta-
tion in this paper, we only focus on the real-valued NSA. 

Suppose detector [ ]Lwww ,,, 21 L  fails to pass the nega-

tive selection phase. Two qualified detectors, 

[ ]11
2

1
1 ,,, Lwww L  and [ ]22

2
2
1 ,,, Lwww L , are first randomly 

selected from the detector set. Next, [ ]  is 
updated to 

Lwww ,,, 21 L

[ ]Lwww ′′′ ,,, 21 L  using the DE method as fol-

lows: 

[ ] [ ]
[ ] [{ }22

2
2
1

11
2

1
1

2121

,,,,,,
,,,,,,

LL

LL

wwwwww
wwwwww
LL

LL

−+

=

]
′′′

λ
.    (5) 

[ ]Lwww ′′′ ,,, 21 L  is then examined with the self samples 

again, as in (1) and (2), to check its validity. If 
[ ]Lwww ′′′ ,,, 21 L  is still not qualified, it will be further 

updated with two newly chosen qualified detectors. In 
other words, the re-editing of the unqualified detectors is 
an iterative procedure, which is repeated until 
[ ]Lwww ,,, 21 L  become valid or a preset number of the 

DE iterations are reached. 

As we know, conventional NSA has the drawback of 
potential waste of detectors generation resources. That is, 
the randomly generated detectors that do not pass the 
above negative selection procedure are just disregarded. 
The proposed DE-based detectors re-editing system can 
overcome this shortcoming by re-using the unqualified 
detectors. Our approach is especially practical in those 
cases, where it is much more costly to generate new 
detectors than to modify existing ones. For example, if 
the detectors are implemented on electronic circuits, 
amending the circuits that have been already designed 
rather than building new prototypes could be cost-saving. 
Moreover, due to the efficient search capability and 
moderate computational complexity of the DE method, 
this novel re-editing scheme can result in an accelerated 
detectors generation process. To obtain the same number 
of qualified detectors, it may take less time for the 
DE-based detectors re-editing scheme than the regular 
random detectors generation method. This advantage 
will be demonstrated using computer simulations in the 
next section. 

Published by Atlantis Press 
  Copyright: the authors 
                  301



Re-editing and Censoring of Detectors in Negative Selection Algorithm 

Generation
Detectors Random

Match SetDetector 

Samples Self

No

Yes

editing-Re
based-DE

Censoring Detection
Anomaly

Knowledge
Prior

Suited

Unsuited

Reject

DE-based Detectors Re-editing Detectors Censoring

Fig. 3. Detectors re-editing and censoring in NSA. 

4. Detectors Censoring in Negative Selection Algo-
rithm 

The real-valued NSA requires the nonself examples to 
achieve a high classification accuracy [8]. Nevertheless, 
it is difficult if not impossible to incorporate domain 
knowledge of the anomaly to be detected into the NSA 
detectors generation and selection. Employment of use-
ful prior information can indeed enhance the novelty 
detection performance of the original NSA [14]. In this 
section, we present a new detectors censoring method, as 
shown in Fig. 3. The censoring phase is applied to the 
detector set to retain the detectors that are more suitable 
for the specific anomaly detection problems. On the 
basis of the prior knowledge, the suitability of all the 
detectors is evaluated, and those inefficient ones are 
removed from the detector set. 

There are a lot of ways of utilizing different domain 
knowledge to censor the NSA detectors. We here only 
concentrate on the domain knowledge reflecting the 
variations of the anomalous signals under detection, 
because anomaly can often lead to high-frequency os-
cillations. Assumed known beforehand, the degrees of 
the variation severity of signals are used for our detec-
tors censoring. More precisely, for a time series signal 

, it is split into non-overlapping win-

dows, 
. 

),,2,1( nixn L=

[ ] [ ] [ nLnLnLLLL xxxxxxxxx ,,,,,,,,,,,, 2122121 LLLL +−+−++ ]

Lxxx ,,, 21 L 1V
As an example, the degree of the variation severity of 

, , is calculated with the backward dif-

ference technique: 

[ ]

∑
−

=
+ −=

1

1
11

L

i
ii xxV .              (6) 

Similarly, 132 ,,, −L
nVVV L  are obtained. Note that as the 

prior knowledge, the ranges of 121 ,,, −L
nVVV L  are as-

sumed available in advance. The suitability of all the 
detectors in the detector set can be evaluated according 
to (6). For instance, the suitability of  is [ ]Lwww ,,, 21 L

∑
−

=
+ −=

1

1
11

L

i
ii wwW .             (7) 

Based on the ranges of  (iV 1,,2,1 −=
L
ni L ), we can 

select the suited detectors in the following way: if  

of 

iW

[ ]iLLiLi www ,,, )1(1)1( L−+−  is beyond , 

this detector is expunged from the detector set. Every 
detector needs to go through the above suitability 
evaluation and censoring stages. Obviously, the whole 
detector set is further tailored to target at dealing with 
the anomaly detection of . In summary, our detectors 

censoring approach can utilize the prior knowledge of 
the anomalous signals to provide us with the 
goal-directed detectors. Nevertheless, it has the disad-
vantage of demanding for more detectors to be generated, 
because a certain portion of the detectors are removed 
from the detector set in the censoring phase. That is to 
say, this censoring technique may slow down the detec-
tors generation procedure.  

[ ])max(),min( ii VV

 nx

5. Simulations 

In this section, we use three numerical examples to 
demonstrate the effectiveness of the proposed NSA de-
tectors re-editing and censoring schemes. The first two 
examples are on the basis of only artificial data, but a 
practical bearings fault detection problem is investigated 
in the third example.  

Example 1. DE-based detectors re-editing in NSA 

In the first example, two self sample sets, A and B, are 
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used, each of which consists of 1,000 self samples nor-
malized within [0, 1] [21]. They are represented by ‘+’ in 
Figs. 4 and 5, respectively. The radiuses of all the de-
tectors are chosen to be 0.05. A 100-detector set is first 
generated using the self samples. The DE method is next 
applied to re-edit those unqualified detectors. For self 
sample set A, the only unqualified detector is located at 
(0.5, 0.5) denoted by a filled circle. For self sample set B, 
there are two unqualified detectors located at (0.35, 0.35) 
and (0.65, 0.65), respectively. Figures 4 (a) and (b) show 
two typical DE evolution procedures in case of self 
sample set A, in which three and four iterations are in-
volved, respectively. In Figs. 5 (a) and (b), it takes one 
and three DE iteration steps to accomplish the detectors 
re-editing work for self sample set B. However, we must 
point out that the numbers of the iterative steps needed 
always vary, due to the locations of the unqualified de-
tectors as well as stochastic nature of the DE technique. 
Therefore, a total of 10,000 independent trials are made 
to examine its statistic characteristics. For the three un-
qualified detectors in Figs. 4, 5 (a), and 5 (b), the average 
numbers of the DE iterations used for qualifying the 
detectors are given in Table 1. This simple example 
demonstrates that the unqualified detectors can be up-
dated to become qualified in our detectors re-editing 
scheme.  
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(b) 

Fig. 4. Examples of DE-based detectors re-editing in NSA (self 

sample set A). 
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(b) 

Fig. 5. Examples of DE-based detectors re-editing in NSA (self 

sample set B). 
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Table 1. Average numbers of DE iterations for update of  

unqualified detectors.  

 Average numbers of 
DE iterations 

Unqualified detector in 
Fig. 5 

4.9051 

Unqualified detector in 
Fig. 6 (a) 

1.8458 

Unqualified detector in 
Fig. 6 (b) 

2.0198 

We further compare the efficiency of our DE-based de-
tectors re-editing method and random detectors genera-
tion approach. In the former method, the number of the 
DE iterations for updating 10,000 random unqualified 
detectors to be qualified is recorded, while in the later 
approach, we count the total number of the detectors 
randomly generated after 10,000 qualified ones are ob-
tained. The comparison results are given in Table 2, 
which are also based on the average of 100 separate 
trials. The number of the DE iterations used in our 
method is on the comparable level with that of the de-
tectors generated in the random detectors generation 
approach. Thus, it can be concluded that the former is a 
better choice for the NSA than the latter, if the cost of 
building the detectors is high.  

Table 2. Comparison between DE-based detectors re-editing 

method and random detectors generation approach. 

Method 1: DE-based detectors re-editing method 

(numbers of DE iterations used). 

Method 2: Random detectors generation approach 

(numbers of random detectors generated). 

 Method 1 Method 2 
Sample set A 48,170 55,111 
Sample set B 18,418 17,186 

Example 2. Anomaly detection of sinusoidal type signals 

The normal and abnormal signals in this example are 
pure and noise-corrupted sinusoidal type signals with 
different frequencies, as illustrated in Figs. 6 (a) and (b), 
respectively. Compared with the normal signal, the ab-
normal one has a ten-time higher frequency, and it is 
distorted by white noise. The elevated frequency and 
noise here are assumed to be caused by only the anomaly. 
Some simulation parameters are given as follows: num-
ber of detectors is 100, detector coverage 1=d , and 
width of detectors 10=L . Note that these parameters 
are not guaranteed to achieve the best anomaly detection 
rate, because they are chosen solely based on trial and 
error. Both the normal and abnormal signals contain 
1,000 samples.  

The degrees of variations of these two signals are meas-
ured by  in (6), and are illustrated in Figs. 7 (a) and 
(b). Apparently, V  of the abnormal signal, which is 
between 1 and 5, is much larger than that of the normal 
signal. As aforementioned, the range of V  is consid-
ered as the prior knowledge for the detectors censoring. 
Thus, in our detectors censoring system, the suitability 
of all the detectors in the detector set is evaluated, and 
only those with the  within [1, 5] can be retained. 
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Fig. 6. Sinusoidal type signals in Example 2. 

(a) normal signal, (b) abnormal signal. 
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Fig. 7. of normal and abnormal signals. V

(a)  of normal signal, (b)  of abnormal signal. V V

The anomaly detection results of the detectors before 
and after the above censoring are demonstrated in Figs. 8 
(a) and (b), respectively. The number of the detectors 
activated by the abnormal signal is deployed to examine 
their efficiency. We stress that a total of 100 trials are run. 
For the detectors before censoring, only one or two de-
tectors can detect the anomaly in certain trials. Figure 8 
(b) shows that the censored detectors are more efficient 
than those in Fig. 8 (a). Averagely, 3.4 detectors are ac-
tivated in each trial among the ones, which have passed 
the censoring phase. In other words, a significantly im-
proved anomaly detection performance can be achieved 
with the detectors censored using the prior information 
of the anomalous signal.  
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(b) 

Fig. 8. Anomaly detection results of detectors. 

(a) anomaly detection results of detectors before censoring, 

(b) anomaly detection results of detectors after censoring. 
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Example 3. Bearings fault detection 
Bearings are indispensable components in the rotating 
machinery. Appropriate monitoring of their conditions is 
important in maintaining the normal status of operating 
motors [22]. Unfortunately, various bearings faults, such 
as ball damage, can occur in practice, due to the severe 
working environments. An illustrative example of the 
bearings fault is given in Fig. 9. Two typical kinds of 
bearings faults, ball damage fault and inner raceway 
fault, are investigated in our simulations. However, we 
must emphasize that this paper does not aim at con-
structing any practical bearings fault detection systems. 
The bearings fault detection problem is employed here 
only as a simplified testbed, and most of its technical 
details are not considered.  

 

Fig. 9. An illustrative example of bearings fault.  

(a) Bearings ball damage fault detection 
The feature signals of the healthy and faulty bearings 
with ball damage are shown in Figs. 10 (a) and (b), re-
spectively. There are 5,000 samples in both two signals, 
which are collected at the sampling frequency of 20 kHz 
from a vibration sensor mounted on top of the NYLA-K 
eight-ball bearings [15]. The model of the vibration 
sensor is IMI Sensors 601A01. The motor is a 
three-phase industrial motor of 0.5 horsepower manu-
factured by the Baldor Electric Company. It has the ro-
tation speed at 1,782 rpm. 
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(b) 

Fig. 10. Feature signals of bearings in Example 3 (a). 

(a) feature signal of healthy bearings, 

(b) feature signal of faulty bearings with ball damage fault. 

The above two feature signals are split into 
non-overlapping windows with the width of 10. Their 
degrees of variations V are given in Figs. 11 (a) and (b). 
We can observe that due to the existing ball damage, the 
faulty bearings generate much higher degrees of varia-
tions in the feature signal than the normal bearings. 
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Fig. 11.  of feature signals of bearings in Example 3 (a). V

(a)  of feature signal of healthy bearings,  V

(b)  of feature signal of faulty bearings with ball damage. V

We choose the number of the detectors to be 1,000, and 
the detector coverage . As in Example 2, the 
width of the detectors . However, the thresholds 
of  for censoring the detectors are 0.15 and 3 instead 
of  and . Again, 100 simulation trials 

have been run. Figures 12 (a) and (b) illustrate the ball 
damage fault detection results of our detectors. The total 
numbers of the detectors activated by the faulty feature 
signal before and after censoring are 22 and 71, respec-
tively. The Received Operating Characteristic (ROC) 
method is usually used to evaluate the fault detection 
performance of the NSA [8]. The fault detection and 

false alarm rates are defined as follows: 

3.0=d
10=L

W
)min( iV )max( iV

 
FNTP

TPrateDetection 
+

= ,           (8) 

where TP is True Positive, and FN is False Negative. 

TNFP
FPrate alarm False
+

= ,          (9) 

where FP is False Positive, and TN is True Negative.  
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(b) 

Fig. 12. Bearings ball damage fault detection results of  

detectors. 

(a) Bearings ball damage fault detection results of detectors 

before censoring, 

(b) Bearings ball damage fault detection results of detectors 

after censoring. 

The means of the fault detection rates of the detectors 
before and after censoring are 0.054% and 0.214%, re-
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spectively. Their false alarm rates are both zero. The 
above fault detection results are summarized in Table 3. 
It is clearly visible that the censored detectors can yield a 
superior bearings ball damage fault detection perform-
ance over the uncensored ones.  

Table 3. Bearings ball damage fault detection performances of 

detectors before and after censoring. 

 Detectors before 
censoring 

Detectors after 
censoring 

Numbers of detec-
tors activated 

22 71 

Detection rates 
(mean) 

4104.5 −×  0.0021 

Detection rates  
(standard derivation) 

0.0014 0.0047 

False alarm rates 
(mean) 

0 0 

False alarm rates  
(standard derivation) 

0 0 

(b) Bearings inner raceway fault detection 

In the bearings inner raceway fault detection, the motor 
system consisting of a two horse-power reliance electric 
motor (left), a torque transducer/encoder (center), a dy-
namometer (right), and control electronics (not shown) is 
deployed [23], as illustrated in Fig. 13. The motor speed 
and motor load are 1,750 rpm and two horse-powers, 
respectively. The inner raceway fault with a diameter of 

 is centered at the load zone. The experimental 
data is collected at 48,000 samples/second from the drive 
end bearings using the accelerometers attached to the 
housing with magnetic bases. The vibration signals of 
the bearings are measured and recorded in a 16 channel 
DAT recorder. Figures 14 (a) and (b) show those vibra-
tion samples from the healthy bearings and faulty bear-
ings with the introduced inner raceway fault, respec-
tively. The degrees of variations V  of the feature sig-
nals are given in Figs. 15 (a) and (b). More relevant 

details of the bearings data in our simulations can be 
found from [23].   

401.0 ′′

 

Fig. 13. Motor system in bearings inner raceway fault  

detection [23]. 
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(b) 

Fig. 14. Feature signals of bearings in Example 3 (b). 

(a) feature signal of healthy bearings,  

(b) feature signal of faulty bearings with inner raceway fault. 
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(b) 

Fig. 15.  of feature signals of bearings in Example 3 (b). V

(a)  of feature signal of healthy bearings,  V

(b)  of feature signal of faulty bearings with inner raceway 

fault. 

V

The number of our detectors in the inner raceway fault 
detection is 100. We choose the detector cov  

2=d , and the width of detectors 10=L . The two 
thre olds of W  for censoring these detectors are 1 and 
6.5. Figures 16 (a) and (b) illustrate the inner raceway 
fault detection results of the detectors before and after 
censoring: 4,592 vs. 847. The fault detection perform-
ances of the detectors in Example 3 (b) are summarized 
in Table 4, from which we can observe that the proposed 

censoring approach has significantly enhanced the inner 
raceway fault detection capability of the NSA de

erage

tectors. 

sh

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Number of Trials
N

um
be

r o
f D

et
ec

to
rs

 A
ct

iv
at

ed
 

(a)  

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Number of Trials

N
um

be
r o

f D
et

ec
to

rs
 A

ct
iv

at
ed

 

(b) 

Fig. 16. Bearings inner raceway fault detection results of  

detectors. 

(a) Bearings inner raceway fault detection results of detectors 

before censoring, 

(b) Bearings inner raceway fault detection results of detectors 

after censoring. 

 

 

Table 4. Bearings inner raceway fault detection performances 
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of detectors before and after censoring. 

 Detectors before 
censoring 

Detectors after 
censoring 

Numbers of detec-
tors activated 

847 4,592 

Detection rates 
(mean) 

0.0087 0.0709 

Detection rates  
(standard derivation) 

0.011 0.0543 

False alarm rates 
(mean) 

6100.6 −×  4108.3 −×  

False alarm rates  
(standard derivation) 

4105.4 −×  4102.9 −×  

rate alarm False
rateDetection  145.3 186.6 

6. Conclusions 

In this paper, we propose two novel schemes for the 
NSA detectors re-editing and censoring, in which the 
unqualified detectors are updated using the DE method 
to become qualified, and the whole detector set is cen-
sored based on the prior information of the anomaly. 
Three numerical examples, including a practical bear-
ings fault detection problem, are employed to verify our 
approaches. Improved detectors generation and anom-
aly/fault detection performances are obtained with these 
two methods in the computer simulations. We emphasize 
that the domain knowledge used for the detectors cen-
soring is always application dependent, and is not only 
limited to the variation severity of the anomalous signals 
discussed here. In addition, study of the robustness of the 
proposed schemes is an interesting research topic. 
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