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Abstract

Multicast routing is regarded as a critical component in networks especially the real-time applications become in-
creasingly popular in recent years. Existing multicast routing under certain QoS Constraints tend to use conven-
tional IP QoS architecture based on GA. In this paper, we propose a novel fast multi-objective evolutionary algo-
rithm called QMOEA for solving multicast routing problem (MRP) in MANET. The steps are that, through the
analysis of the strengths and limitations of the well-known multicast architecture, we firstly give an improved Core
Based Tree model to simplify the MRP. Based on this model, we then propose the QMOEA which integrates the
“Greedy”and “family competition”approaches to speed up the convergence and to maintain the diversity of popu-
lation. After that, we present the theoretical validations for the proposed method to show its efficiency, and finally,
the performance of MANET scaled from 20 to 200 nodes with different types of service is evaluated by OPNET,
our experimental results show that our proposed method is capable of achieving faster convergence and more pref-
erable for multicast routing in MANET compared with other genetic algorithms (GAs) well-known in the literature.
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1. Introduction

Multicast routing has drawn a lot of attention in recent
years, since it enables a source to send messages to mul-
tiple destinations concurrently. The wireless communi-
cation technologies and mobile devices have realized
the important and useful applications of mobile ad hoc
network (MANET) with greatly advancement. Multicast
routing plays a critical role in the transmission of infor-
mation, such as video and other streaming data. Never-

theless, the main difficulty in designing a routing proto-
col for mobile ad hoc networks is the dynamical topol-
ogy which results from the random movement of mobile
nodes within the source’s transmission range. MANET,
which is fundamentally different from conventional
infrastructure-based networks, is self-configuring and
formed directly by a set of mobile nodes. In MANET,
the heterogeneity of networks and destinations makes it
difficult to improve bandwidth utilization and service
flexibility. Therefore, mobility of hosts (nodes) makes
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the design of multimedia distribution jobs greatly chal-
lenging.

Up to now, various works involved focus on design-
ing multicast routing algorithm 1-6. An early summary of
problems and general technical solution related to mul-
ticast communication was given by Diot et al. 7. Tafa-
zolli et al. 8 and Chen et al. 9 present a survey of multi-
cast routing under certain QoS constraints solutions for
MANET. As an NP-Complete problem, to develop dif-
ferent types of heuristic algorithm for calculating near-
optimum paths with multiple QoS constraints is a re-
search focus. For example, Wang et al. 10 investigate
three representative intelligent computational methods
(genetic algorithm, simulated annealing and Tabu
search) to construct the QoS multicast trees to support
multimedia group communication separately; the pro-
posed algorithms consider both the end-to-end delay
constraint and network resource requirement; the simu-
lation evaluates the performance of three heuristics on a
small-scale real-world multimedia communication net-
work and a randomly generated large-scale network,
and then concludes that genetic algorithm shows the
best performance in terms of the solution quality. In
2008, Qu et al 11 propose a set of node-based rate con-
straints to model the interference relationship among
nodes in a wireless ad hoc network and to provide rate
constraints for its QoS flows, they demonstrat that, the
algorithm can always admit the feasible flows as well as
make full use of the bandwidth resource. Zahrani et al.
12, 13 import logarithmic simulated annealing (LSA) as
pre-processing of GA; the algorithm utilizes the par-
tially crossover operation (PMX) under the elitist model
and the landscape analysis were presented to estimate
the depth of the deepest local minimal in the landscape
generated by the routing tasks and the objective function;
experimental results show that the algorithm is effective
on the randomly generated networks. Yang et al. 14 and
Ikeda et al. 15 focus on creating a robust path to find
solution for specified networks; the genetic algorithm is
proposed and, respectively, the individuals of the popu-
lation are represented by trees, algorithm uses the single
point crossover and a mutation operation where the
“tree junctions” are chosen randomly, the algorithm
employs the elitist model where the individual with the
highest fitness value in a population is left unchanged in
the next generation, the simulation results show that the
algorithm is reasonably fast on small and medium size
networks. Differing from the above network architec-

ture, Rango et al. 16 and Mala et al. 17 refer a scheme
called Core Based Tree (CBT) with genetic algorithm
which provides a new way for realizing multicast rout-
ing protocol in wireless networks, however, it needs
much running time.

The remainder of the paper is organized as follows. In
Section 2 we state some basic conceptions of multi-
objective optimization and give the mathematical de-
scription for problem. A QoS-Aware Multicast Routing
Architectures is given in Section 3. We outline the de-
sign of proposed algorithm in Section 4. Section 5
analyses the properties of our method. The simulation
results and performance evaluation are shown in Section
6 and the last section presents our conclusion.

2. Notations and Problem Formulation

To begin with we will introduce some basic conceptions
of multi-objective optimization before we describe the
problem that would help us know the model thoroughly.

2.1. Basic Conceptions

Definition 1 (Multi-objective Optimization Problem,
MOP) the MOP consists of n decision parameters, k
objective functions and m constraints, without loss of
generality:

Maxmize ( ) ( ( ), ( ), , ( )kf f f f  1 2 y x x x x
Subject to ( ) ( ( ), ( ), , ( ))me e e e 1 2 0x x x x
Where ( , , )mx x x 1 2 x , ( , , )ny y y 1 2 y .

x is decision vector, y is objective vector,  denotes
the decision space formed by x,  denotes the objec-
tive space formed by y.
Definition 2 (Pareto Dominance): a vector 1 2( , ,a aa

, )na is said to dominate 1 2( , , , )nb b b b if and
only if a is partially less than b , i.e.

{1,2, , }, {1,2, , },i i j ji n a b j n a b     .

Definition 3 (Pareto Optimal): a decision vector bx is
said to be Pareto Optimal if and only if there is no

a x where 1 2( ) ( , , , )a nF a a a  x a dominates
(use Definition 2’s scheme) 1 2( ) ( , , )b nF b b b  x b .
Definition 4 (Pareto Front) the set of all Pareto-optimal
decision vectors is called the Pareto-optimal set of the
problem and the corresponding set of objective vectors
is called Pareto Front.

As we know, most of problems in the world are
known as non-orthogonal problems. In a linear problem,
each component is independent, so that any improve-
ment to any one part will lead to an improvement of the
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entire system. But few real-world problems like this,
while most of real world problems are nonlinear, one
component changing may have ripple effects on the
entire system, and thus we should treat the problem as a
multi-objective optimization model.

2.2. Problem Formulation

A network can be modeled as an undirected graph
( , )G V E , where V is the set of nodes that represent

routers and E is the set of arcs (arcs represent path be-
tween nodes). Each link between two nodes is bi-
directional, it means that if there is a link ( , )e u v , the
link ' ( , )e v u also exists. We employ the metrics of

( )bandwidth e , ( )delay e , packet ( )loss e ratio and delay
( )jitter e , which could describe the QoS request of most

services from our previous study, to evaluate each link e 18.
Let ( , )p s d be a path from the source node s to the desti-
nation d, the total bandwidth of the path ( , )p s d is the
minimum of bandwidth of all links along ( , )p s d and it is
denoted as ( ( , ))Bandwidth p s d :

( , )( ( , )) min [ ( )].e p s dBandwidth p s d bandwidth e (1)

( , )
( ( , )) ( ).

e p s d
Delay p s d delay e


 (2)

( , )
( ( , )) 1 (1 ( )).

e p s d
Loss p s d loss e


   (3)

( ( , )) max[ ( ( , ))]
min[ ( ( , ))].

Jitter p s d Delay p s d
Delay p s d


 (4)

QoS multicast routing problem can be defined as fol-
lows:

1 2 3 4min min{ , , , }.F F F F F  (5)

Where:

1 ( , )

2 ( , )

3 ( , )

4

min [ ( )]

( )

1 (1 ( ( ))

max[ ( ( , ))] min

e p s d

e p s d

e p s d

F Bandwidth e

F Delay e

F Loss e

F Delay p s d











 

 




[ ( ( , ))]Delay p s d









(6)

In contrast, this model imports a scalarization scheme
to depict the problem rather than to aggregate the multi-
metric into a single value. Ikeda et al. 15 describe the
relationship between Pareto solution and the solution
space (see Fig.1). Fig.1 indicates that solutions obtained
by GA are rare in the Pareto solution space. It can be
predicted that we will get no solution in the Pareto solu-
tion space if the coefficients are not appropriate. Due to
contradiction among metrics, GA will make only one of
them prone to optimum.

Accordingly, it is improper to aggregate the multi-
metric into a single value among multi-objective prob-
lem, and thus our definition for solving multicast prob-
lem is more preferable.

Fig.1. Relationship between Pareto solution and solution space

3. QoS Multicast Routing Architecture

Fig.2 illustrates the change of topology of MANET. It is
more complex to construct a Steiner tree for the group
with dynamic change in group members. Thus the CBT
technique is chosen, and one node will be regarded as the
Rendezvous Point (RP). Rango et al. 16 and Mala et al. 17

show details that how the CBT protocol works when
nodes are allowed to join and leave the multicast group
dynamically. We focus on the RP (core) selection herein
rather than address the details again. Nevertheless, as a
key point of CBT, it adopts link costs for the core selec-
tion, namely, it aims at only one component of the prob-
lem instead of all.

Fig.2. Dynamic topology of MANET

In order to overcome the difficulty of selecting core,
we redefine the ( ( , ))cost p s d :

1

2 3

4

4

1

( ( , )) ( ( , ))
( ( , ))+ ( ( , ))

( ( , ))

1i
i

cost p s d Bandwidth p s d
Delay p s d Loss p s d

Jitter p s d


 






  
   



 



(7)
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Let ( ( , ))r p s d be the sum of cost, the mean cost associ-
ated to core node c can be expressed as follows:

1( ) ( ( , )).
MGx VMG

cost c = r p c x
V 

 (8)

Where MGV is the amount of members in multicast group.
The multicast routing architecture can be described as
Fig. 3. We divide the multicast routing problem into two
segments: one is formed by the multicast group and the
core via improved CBT protocol that uses new policy in
selecting core showed in Eq. (7) and (8); the other is the
combination of the source and the core, using the pro-
posed method to find the optimum path from the source
to the core. It means that the MRP is divided into “Uni-
cast”segment and “Multicast”segment.

Fig.3. II-segment architecture of multicast routing

Proposition: the II-segments division of MRP does not
change its property of NP-Complete.
Proof Wang et al. 19 proved that two or more additive
and multiplicative metrics in any possible combination
is NP-Complete. In our architecture, the delay is an ad-
ditive metric and the loss is multiplicative, therefore, it
is still an NPC problem after division of MRP in
MANET.

4. Design of QMOEA

4.1. Multi-Objective Evolutionary Algorithm

Evolutionary algorithm (EA) is a type of heuristic
global search algorithm, extensively applied to various
kinds of optimization problems. In general, they in-
cludes three operators: selection, crossover and muta-
tion. Fig.4 presents the framework of EA.

Fig. 4 Framework of EA

EAs have been recognized to be possibly well-suited
to multi-objective optimization since early in their de-
velopment. Multiple individuals can search for multiple
solutions in parallel, eventually taking advantage of any
available similarities in the family of possible solutions
to the problem. The ability to handle complex problems,
involving features such as discontinuities, multimodality,
disjoint feasible spaces and noisy function evaluations,
reinforces the potential effectiveness of EA in multi-
objective search and optimization, which perhaps is a
problem area where Evolutionary Computation distin-
guishes itself from other multi-objective algorithms.

More stuff about multi-objective evolutionary algo-
rithm (e.g. NSGA-II, SPEA2) can be found in Deb’s
book 20.

4.2. QMOEA for MANET

Throughout this paper, ( )X n


denotes the nth generation
population, X


denotes the current population. iX is the

individual in X


. Probabilities for crossover and muta-
tion are denoted by cp and mp . ( )sT , ( )cT and ( )mT 
stand for the selection, crossover and mutation for popu-
lation respectively.

4.2.1. Coding

Chromosome coding, the chief matter and key issue
when applying the evolutionary algorithm, affects not
only the methods of decoding and fitness evaluation, but
also the realization of selection, crossover and mutation
procedures. There are many works focusing on coding.
Zhou et al. 21 summarize three normal coding approaches
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and conclude that Prufer coding is more feasible because
of lower complexity. However, for the specificity of
MRP in MANET, coding methods can be divided into
two categories: one is that the individual is represented
by a tree 14, however, whether this method could traverse
the whole state space or not needs to be proven despite it
can eliminate cycles and invalid paths after genetic op-
erations; the other is path coding, which utilizes the vis-
iting sequence of nodes as the coding principle that con-
forms to Dejong’s block assumption.

Fig. 5 An example of encoding

In this paper, we adopt path coding and attach a visit-
ing vector to each chromosome (As Fig.5 shown). It is
simple and doable; moreover, it does not generate inva-
lid paths after genetic operation.

4.2.2. Fitness Function

The algorithm sorts all the chromosomes according to
Pareto Dominance relationship between two individuals
when evaluating each individual’s fitness; i.e. it defines
the first batch of Pareto Dominant individuals’fitness,
which is called “Pareto Rank”, equal to 1, and then re-
moves these individuals from the population. In the re-
sidual population, the second batch of Pareto Dominant
individual’s fitness is defined as 2, and the rest may be
similarly deduced till all individuals are defined.

4.2.3. Selection

By means of individual’s fitness evaluation, we can
conclude that individuals in the same Pareto Dominant
have the same Pareto rank. So, the selection can be de-
scribed as:

1

( )
{ ( ) } .

( )

i
s i n

k
k

f X
P T X X

f X


 




(9)

4.2.4. Crossover

We first define the “adaptive back-off selection probabil-
ity”as:

_ .weight kN M
p

N


 (10)

Where N is the number of individuals, and _weight kM
stands for the number of individuals whose Pareto rank
equals to k. Because adaptive back-off selection is an
ideal way to implement “family competition”, it can
avoid two potentially negative effects - the loss of popu-
lation diversity and trapping at a local optimal.

Hence, when one individual is chosen randomly, the
other one that participates in crossover could be selected
by:

_

1

_

1

( )

( )
{ ( ) } .

( )
(1 )

( )

j
j weight kn

k
k

s j
j

j weight kn

k
k

f X
p X M

f X
P T X X

f X
p X M

f X






 




 
  








(11)

Where ( )X n


is the nth generation population, X


stands
for the current population and iX is the individual in
X


.
To speed up convergence of QMOEA, greedy algo-

rithm is imported. Greedy, a useful and powerful means
in many optimization problems 6, 22, 23, 24, converges very
quickly but it is liable to trap at a local optimal. That is
the reason why we employed “family competition”. So,
the crossover operation can be described as follows:
Step 1: Select N individuals independently from the
group ( )X n


so as to get the population of 1( ) ( ,X n X



2 , , )NX X .
Step2: Select two individuals according to “family
competition”:

1 2 3( ) ( , , , , )i nX n    (12)
' '

1 2 3( ) ( , , , , )j nX n v   (13)
Step3: Let 1 be the first gene of ( 1)iX n  , find the
next gene of 1 in (12) and (13), evaluating their Pareto
Dominant Relationship, then choose one (such as 2 )
that dominates the other as the second gene of ( 1)iX n
and set the corresponding unit of its visiting vector to 1.
Step 4: Find the position 2 in (12) and (13), compare
their tail gene to confirm which is better, then choose it
as the next gene of ( 1)iX n  and set its corresponding
unit of visiting vector to 1 analogously.
Step 5: Repeat the above steps, till ( 1)iX n  is format-
ted.
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( 1)jX n  can be generated similarly, just with the dif-
ference of getting the next gene from the reversed direc-
tion. Then crossover can be described as follows:

1 2( )
{ ( , )}

1
c i j

c i j
c i j

l l p X X
P T X X

p X X
   

(14)

Where 1l and 2l is the length of chromosome.

4.2.4. Mutation

The single point mutation is adopted in QMOEA.

( , ) ( , ){ ( ) } (1 )d X Y l d X Y
m m mP T X Y p p   


(15)

Where ( , )d X Y denotes the number of gene pairs that
the corresponding gene in X and Y is different with
each other.

5. Analysis of QMOEA

We assumed that V is the number of nodes in net-
works; c V is the size of population, c is a constant;

.Gen denotes iterative times of QMOEA, the pseudo-
code of QMOEA is shown as Fig. 6.

Algorithm QMOEA
1. Void Main
2. {
3. set generation=0;
4. While (generation <= .Gen )
5. {
6. Initialization;
7. Fitness evaluation;
8. Selection;
9. Select two individuals by “family competition”;
10. Crossover;
11. Mutation;
12. }
13. }

Fig. 6 Pseudo-code for MOEAQ

5.1. Time Complexity

Firstly, for population initialization that takes (O
( 1))c V V   ; secondly, the algorithm needs to sort all

of the individuals when evaluating fitness, which takes
22( )O c V ; moreover, operations selection, crossover

(it contains “family competition”selection for crossover)
and mutation take ( )O c V , 3( )O c V c V   and

( )O c V respectively. Therefore, the one time of evolu-

tionary operation takes ( ( 1)O c V V c V c V      
3 )c V c V   . So, the time complexity of MOEAQ is

3

3

( . ( ( 1)
))

( . )

MOEAQT O Gen c V V c V c V
c V c V
O Gen V

        
  
 

(16)

QSGA, which proposed by Ref. 17, takes ( (O c V 
1))V  for population initialization; 2( )O c V for fit-

ness evaluation; ( )O c V , 2( )O c V and ( )O c V for
selection, crossover and mutation respectively, besides,
it eliminates the circle and invalid path that needs

3( )O c V , therefore, the time complexity of GAQ is
' 2

3

' 3

( . ( ( 1)
))

( . )

GAQT O Gen c V V c V c V
c V c V
O Gen V

        
  
 

(17)

Where '.Gen denotes the iterative times of QSGA.
Based on our previous research in traveling salesman

problem (TSP) 22, 23, we can conclude that '.Gen 
.Gen . So, theoretically, QMOEA can converge much

faster than QSGA.

5.2. Convergence analysis of QMOEA

To validate the convergence of QMOEA, two defini-
tions are required as follows:
Definition 5 (Satisfactory Population Value) ( )F X 



max{ ( ); }if X i N is the satisfactory population value
of 1 2{ , , , }NX X X X


 .
Definition 6 (Satisfactory Population Set) * { ;M X



( ) max{ ( ); }}F X f X X S 


is satisfactory population
set.
Lemma Utilizing Eq. (7) to depict fitness is the suffi-
cient condition of Pareto rank in QMOEA.
Proof It is obvious that, the individual who with the
lowest Pareto rank in the population is definitely to be
with the highest fitness depicted by Eq. (7), i.e. the for-
mer is the sufficient condition of the latter.

According to the above two definitions and the
Lemma we assume that QEA uses formula (7) to evalu-
ate fitness and the same genetic operators mentioned in
section 4, then we have:
Theorem 1 Assume that { ( ); 0}X n n 


is the initial

population generated by QEA then { ( ); 0}X n n 


is a
homogeneous Markov chain.
Proof Firstly, QEA is a Markov chain for the reason
that there is no following effect after genetic operations;
secondly, we know that { ( 1) / ( ) }P X n Y X n X  

  
is

independent of n, so it is homogeneous. In summary,
{ ( ); 0}X n n 


is a homogeneous Markov Chain.
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Theorem 2 { ( ); 0}X n n 


converges to *
0 1{ ( ,M Y Y 



2 , , )}NY Y with probability one.
Proof In terms of Eq. (9), (11), (14) and (15), if

*
0,X Y M


; then crossover operator can guarantee that

( , ) 0nP X Y 


and ( , ) 0nP Y X 


, i.e. X Y
 

; if
*
0X M


, *

0Y M


; we have ( , ) 0nP X Y 


, i.e. X


could
not arrive Y


and there must exist a stationary distribu-

tion which makes that:

*
0

0 *
0

( ),lim { ( ) / (0) }
0, .n

Y Y MP X n Y X X
Y M




   


 
(17)

Obviously, ( )P  has a unique, irreducible, non-
periodic, and positive recurrence class *

0M , and *
0/S M

is a non-recurrence class, so { ( ); 0}X n n 


is strongly
ergodic, to an arbitrary initial state 0(0)X X


, we have

0lim { ( ) / (0) } ( )

( ) 1.
n

Y M

P X n Y X X Y

Y









   

 



  

 (18)

Therefore, we get:

0lim { ( ) / (0) } ( ) 1.
n

Y M

P X n Y X X Y


   
  

(19)

From the validation of Theorem 1 and Theorem 2, we
know that QEA can achieve convergence. According to
the lemma, utilizing formula (7) to depict fitness is the
sufficient condition of Pareto rank in QMOEA, and we
have that QMOEA can achieve convergence too.

6. Simulations and Performance Evaluation

6.1. Simulations

The proposed approach was tested on different scale of
MANET ranged from 20 to 200 nodes. The MANET
randomly generates a scenario 25, in which the nodes are
distributed in an area of 1000×1000 m2, four QoS pa-
rameters (bandwidth, delay, packet loss rate and jitter)
are generated at the same time.

Fig. 7(a) shows the choice of crossover probability
(Pc) in QEA when solving multicast routing problem
among 200 nodes (we set population size to be 1000).
As Pc increases from 0.20 to 0.45, the fitness of popula-
tion increases due to the crossover being the main op-
erator in the evolutionary algorithm, whereas the fitness
of population decreases slightly when Pc set to 0.50, i.e.
the best choice of crossover probability to QMOEA is
0.45. In the same way, Fig. 7(b) indicates the choice of
mutation probability (Pm). When the mutation probabil-
ity increases, the fitness of population also increases for

the higher probability of mutation can escape from the
local optima effectively, however, we could only set the
upper bound of Pm to be 0.1 for the reason that the
higher Pm will make the algorithm degenerated into a
stochastic searching approach.
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Fig. 7 Parameter choices for crossover and mutation probabil-

ity
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Fig. 8 Comparison of fitness of QEA and QSGA

Fig. 8 illustrates the convergence process of QEA and
QSGA as we run the algorithms for 30 times. From the
curves, the population fitness of QSGA tends to in-
crease before 400 generations, but it can escape when
falling into the local optimal that exists in the section
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from 400 to 500. The reason is: before 400 generations,
the diversity of population is rich, whereas after 400, it
is poor, and then the mutation operation works. When
QSGA runs under generations from 500 to 1000, the
perspective of population fitness is increasing. Com-
pared with QSGA, the transformation of QEA is simpler
due to the “Greedy” crossover operation. QEA con-
verges at about 300 generations, and its fitness is higher
than QSGA.

Table 1 compares the results obtained by QMOEA
with that of the QSGA. As we have discussed above,
The Pc and Pm for QMOEA are set to 0.45 and 0.1 re-
spectively, while for QSGA they are set to 0.6 and
0.05.With respect to the running time (RT) and evolu-
tionary generation (Gen), QSGA is more than three
times as much as QMOEA. This result follows the
analysis in Section5 that QMOEA can converge much
faster than QSGA. As the nodes increase, QMOEA acts
more effectively. QMOEA, integrating greedy and
“family competition” approach, can not only stabilize
the search behaviors, but also yield solutions of higher
quality and cost less running time. In summary,
QMOEA is a promising method for MANET multicast
routing within reasonable time.

Table 1 convergence speed of QMOEA and QSGA

QMOEA QSGA
Nodes

Gen. RT(s) Gen. RT(s)

20 10 <0.0001 48 0.015

40 25 0.015 90 0.046

80 38 0.093 196 0.250

100 62 0.234 321 0.421

160 205 1.203 989 3.640

200 315 2.834 1506 8.976

6.2. Performance Evaluation

The main concern of this section is to test the paths ob-
tained by QMOEA and QSGA in providing multicast
users with QoS and satisfying the service requirements
of multimedia applications. We focus on quantitative
aspects of efficiency such as throughput, delivery delay,
media access delay and packet loss ratio. The simula-
tions are conducted using OPNET Modeler 14.0 Educa-
tional Version and Wireless Module 26. The results are
aggregated for a multicasting scenario with typical two

QoS classes. The simulation parameters are defined in
Table 2.

Table 2 Simulation parameters for MANET

Number of Nodes 40

Type of Node Mobile Terminal

Area 1000×1000 m2

Transmission Protocol TCP, UDP

Type of Service FTP, Video Conferencing

Simulation Time 240s

Service Start Time 100s
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Fig. 9 Comparison ofperformance between two paths when

MANET is running with FTP service

Fig. 9 is the comparison of performance between
QMOEA and QSGA with FTP service. The data drop
curve is not given herein because FTP uses TCP to
transmit data to ensure the number of data drop to be
zero. The graph indicates that the throughput of two
paths obtained by QSGA and QMOEA are almost the
same (see Fig. 9(a)), meanwhile the path gained by
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QSGA has higher delay (see Fig. 9(b)), i.e. the paths
obtained by QMOEA has relatively better performance
than QSGA does.
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Fig. 10 Comparison of performancebetween two paths when

MANET is running with Video Conferencing service

Fig. 10 is the comparison of performance between
two paths with Video Conferencing service. Fig. 10(a)
describes the throughput of paths obtained by QSGA
and QMOEA. It is quite obvious that the path gained by
QMOEA has slightly higher throughput than that of
QSGA. As throughputs are saturated at 120 seconds, the
data are beginning to drop; we can see that the data drop
from Fig. 10(c) increases dramatically. Fig. 10(b) repre-
sents delay of two paths. Apparently, the path obtained
by QSGA has higher delay compared with QMOEA. To
sum up, Fig.8 depicts that the path obtained by QMOEA
has higher throughput, lower delay and as the same data
drop, namely, that path is much better.

Consequently, QMOEA not only has better perform-
ance than QSGA but also can deal with multi-objective
problem effectively. Moreover, it is more preferable for
the dynamic topology of MANET since it can get a
Pareto set rather than one “optimal”solution acquired
from QSGA.

7. Conclusions

In this work, we analyzed strengths and limitations of
the well-known multicast model firstly, and then an
improved CBT protocol was proposed to simplify the
QoS multicast routing problem in MANET; Based on
the protocol, we came up with a novel fast multi-
objective evolutionary algorithm to overcome the defec-
tion of slow convergence and liable to “premature”of
conventional GA. The algorithm absorbs the “greedy”
and “family competition”approaches which can speed
up the convergence of algorithm and maintain the diver-
sity of population; Apart from those traits, the proposed
algorithm also can synthesize multi-objective effec-
tively. Through the theoretical analysis, we obtained
conclusions that 1). QMOEA needs less running time
than typical method QSGA; 2). QMOEA can achieve
convergence. The simulation results validate the cor-
rectness of these conclusions. Finally, the performance
evaluation of path obtained by two methods (QSGA &
QMOEA) are given, experimental results show that the
path gained by QMOEA has better performance than
that of QSGA.

For our proposed method runs in the exterior envi-
ronment of the network, one direction of our further
research is to put the proposed method into the real-
world networks to investigate if the ideas developed in
this paper could be executable.
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