

BMR: Benchmarking Metrics Recommender for Personnel issues
in Software Development Projects

Ángel García-Crespo, Ricardo Colomo-Palacios,
Juan Miguel Gómez-Berbís, Myriam Mencke

Computer Science Department, Universidad Carlos III de Madrid,
Av. Universidad 30, Leganés, 28911, Madrid, Spain

[angel.garcia, ricardo.colomo, juanmiguel.gomez, myriam.mencke]@uc3m.es
www.uc3m.es

Abstract

This paper presents an architecture which applies document similarity measures to the documentation produced
during the phases of software development in order to generate recommendations of process and people metrics for
similar projects. The application makes a judgment of similarity of the Service Provision Offer (SPO) document of
a new proposed project to a collection of Project History Documents (PHD), stored in a repository of unstructured
texts. The process is carried out in three stages: firstly, clustering of the Offer document with the set of PHDs which
are most similar to it; this provides the initial indication of whether similar previous projects exist, and signifies
similarity. Secondly, determination of which PHD in the set is most comparable with the Offer document, based on
various parameters: project effort, project duration (time), project resources (members/size of team), costs, and
sector(s) involved, indicating comparability of projects. The comparable parameters are extracted using the GATE
Natural Language Processing architecture. Lastly, a recommendation of metrics for the new project is made, which
is based on the transferability of the metrics of the most similar and comparable PHD extracted, here referred to as
recommendation.

Keywords: Ontologies, Software Metrics, Semantics, GATE, Natural Language Processing.

1. Introduction

The importance of software in today’s industry is
without doubt. Given the critical role of software, the
requirement for project plans adjusted for time, effort,
cost and quality has become a fundamental element for
organizations producing software. Demonstrating the
advancement of the field, since the end of the 1970s
until the present, initiatives have been developed which
aim to accurately plan projects in relation to their actual
realization. In this environment, outsourced software
services are drawn up in response to offer requests from
the perspective of the invisible development process1,
that is, managers make their decisions based on their
personal perceptions rather than on contrasted data.

Various authors have proposed the use of metrics to
improve software development’s visibility, for example
2, 3. Many years ago, Basili 4 wrote “All the data
collected on the project should be stored in a
computerized data base. Data analysis routines can be
written to collect derived data from the raw data in the
data base”. It is precisely this statement which is the
motivation of the current work, adapted to present-day –
to recollect metrics and parameters of past projects with
the objective of planning future projects with better
precision, based on the Offer documentation.
The system is a tool to enable organizations embarking
on new software development projects to utilize
automatic benchmarking, as it compares the Offer
document of a new project with sets of similar PHDs,

International Journal of Computational Intelligence Systems, Vol.2, No. 3 (October, 2009), 256-266

Published by Atlantis Press
 Copyright: the authors
 256

zegerkarssen
Typewritten Text
Received: 14/09/08Accepted: 07/06/09

Á. García-Crespo et al.

and consequently recommends metrics based on the
PHD which is most comparable to the Offer document
from a set of similar PHDs. Benchmarking is
implemented, because only the metrics from the most
comparable PHD document are recommended, whose
appropriateness in the project has already been proven
in the project previously completed.
The paper consists of the following sections. Section 1
introduces the setting of the research for the software
development process, in particular with regard to
software engineering metrics. This is followed by an
introduction to the theory of information extraction, and
an overview of the Natural Language Processing (NLP)
techniques used for the practical implementation of such
tasks, namely the GATE (General Architecture for Text
Engineering) architecture and document clustering
methods. Section 2 describes the architecture of the
system and the components it is comprised of. Section 3
presents a use case which illustrates the uses of the
system, and Section 4 discusses conclusions and future
research work.

1.1. Software Metrics

In short, according to Boehm 5, software metrics help us
to make better decisions. The first book dedicated to
describe Software Metrics dates from 1976 6, but the
history of active software metrics dates back to the mid-
1960's when the Lines of Code metric was used as the
basis for measuring programming productivity and
effort 7 . Thus, as has just been mentioned, the first book
dates from 1976, but the first initial efforts to use
metrics, in this case, Lines of Code, dates from 1971.
The focus of this effort was to oversee the quality of
software produced. Another study 8 dealt with module
defect density (number of defects per KLOC) in terms
of the module size measured in KLOC.
Fenton and Pfleeger 9 classify software metrics into
three main categories: product, process and resources
metrics. According to this taxonomy, personnel metrics
are under resources metrics category. Without a doubt,
the effective combination of the three categories
produces hybrid metrics rich in information, in relation
to individual and group productivity. The current work
is focused on these types of metrics as well as the
central category of personnel metrics.
More precisely, a metric is a quantifiable measurement
of software product, process, or project that is directly
observed, calculated, or predicted 10. Considering this

definition, software metrics may be obtained by means
of observation, they may be calculated, or predicted.
Additionally, within the metrics universe the research
work is focused on the establishment of these types of
metrics, in particular, metrics related to personnel
factors, such as skills, experience, work load, and
productivity.

1.2. Personnel in Software Metrics

The decision to concentrate the research on personnel
metrics was not taken trivially. According to 11,
Personnel attributes and Human Resource activities
provide by far the largest source of opportunity for
improving software development productivity. Previous
work by 5 states that “After product size, people factors
have the strongest influence in determining the amount
of effort required to develop a software product”.
Failure rates in software projects are high and the
qualified software engineers able to deal with software
development processes, and their shortcomings and
caveats 12 represent a scarce resource. Software
development teams are composed of professionals with
a heterogeneous training, background and expertise 13,
that management must be able to evaluate and provide
with a professional view, with the ultimate goal of
improving the competences of the workforce and their
results 6.
Taking into account, on the one hand, the importance of
personnel in development projects, and on the other
hand, the benefits of reliable metrics for the most
appropriate estimation and constant improvement of the
software process, the current work proposes an
architecture capable of extracting personnel related
metrics using Natural Language Processing techniques.
These metrics will be extracted from repositories of
metrics generated through the application of Natural
Language Processing to repositories of documents.
Numerous authors have carried out work in the field of
the use of software repositories applied to software
metrics, in relation to their design 14, or their application
to specific problems in the field of software engineering
15. Concerning the software industry, since the 1970s
initiatives for repositories of metrics have emerged, for
example, DACS Productivity Dataset
(http://www.thedacs.com/databases/sled/prod.shtml),
The architecture research facility (ARF) dataset,
(http://www.thedacs.com/about/services/pdf/Data-
Brochure.pdf), the NASA/SEL Dataset

Published by Atlantis Press
 Copyright: the authors
 257

 BMR: Benchmarking Metrics Recommender

(http://www.dacs.com/databases/sled/sel.shtml), or the
repository of the International Software Benchmarking
Standards Group (http://www.isbsg.org/). The proposed
research work does not aim to be based on data
unconnected with an organization, rather, it is focused
on an organization’s own data. Thus, taking account of
documents generated in previous projects, the objective
is to automatically construct a set of metrics relative to
project personnel, taking advantages of the
functionalities provided by Information Extraction with
Natural Language Processing

1.3. Information Extraction with Natural
Language Processing

The use of NLP to derive parameters related to project
size, effort, time, and resources is an example of the
application of computational techniques which originate
in the Information Extraction (IE) field. Information
Extraction refers to the processing of free (unstructured)
text documents in order to annotate them with a
meaningful, predefined structure relevant for a specific
task, and readable by a particular system. Other
definitions have been proposed by 16, who refers to
information extraction as the identification of instances
of a particular class of events or relationships in a
natural language text, and the extraction of the
associated features of these entities. The problem at
hand is usually restricted to a defined domain, in other
words, it is domain dependent. In the case of this work,
it is evident that the application of the techniques is
limited to the software engineering domain. The
information derived from a text may be divided into
particular categories of linguistic content, such as
named entities; references to people, locations, names of
corporations (proper nouns) and numerical and temporal
expressions, attributes associated with the entities, for
example, a person’s job title, real world facts, and
events.
Systems which represent the information captured in
software engineering documentation for knowledge
reuse in itself is not new, however, the current
architecture uses automatic extraction of features
specifically for the recommendation of metrics. A
system which specifically applied the extraction of
linguistic information for the task of validation of
software documentation is the SIFT (Specific
Information from Text) system 17, which was executed
on online software reference manuals and help systems

semi-formatted with XML. The system extracts
sentences and their semantics defined by a linguistic
formalism, the generative lexicon 18. The system was
used to evaluate an online help system for the Adept
series of structured editors 19. In particular, sentences
which defined specific information in the description of
the repository API were extracted, those referring to the
return codes for routines for accessing document and
document fragments stored in an external repository.
Thus, an extremely useful functionality of sentence
extraction using NLP techniques is exhibited in this
situation: a developer noted that one of the routines
contained an incorrect return code, and by using SIFT,
38 sentences about error return codes out of 46
descriptions of routines were extracted automatically
and could be verified for accuracy.
Álvarez-Macías et al. 20 evaluated the performance of
the application of two data mining algorithms to the
values of the attributes which comprise a companies’
management process, such as staff hiring, staff
dismissal and staff adaptation, to construct rules which
measure the influence of these variables on outcome
parameters like effort assignment, personnel, and
delivery time. The algorithms tested were based on
Evolutionary Algorithms, GAR, an unsupervised
method which builds association rules between the
variables in projects, and ELLIPSES, a supervised
classification method which constructs mathematical
regions for project parameters and determines which
rules are most appropriate for each region.
The current paper focuses on the novel application of IE
methods by specifically extracting information relevant
to project planning and organizing, and thus the
associated metrics. The extraction of the objects in the
current work which refer to size, time, effort and
resources are an example of an IE task known as noun
chunk extraction, where the items extracted are noun
chunks predefined by JAPE grammar rules, which will
be explained further below. To perform this task, the
GATE (General Architecture for Text Engineering)
platform has been incorporated into the platform, and
the capabilities of the language of GATE, JAPE, have
been exploited. JAPE can be used to recognize the
regular expressions contained in the text annotations
made by GATE. A brief overview of the functionalities
of GATE will be given, and its accompanying rule
recognition language JAPE.

Published by Atlantis Press
 Copyright: the authors
 258

Á. García-Crespo et al.

1.3.1. GATE

GATE is a NLP architecture specifically designed to
perform the tasks referred to above, for example,
Named Entity Recognition and Coreference resolution ,
determining attributes associated with entities, which
indicate equivalence between entities. However, these
are just two examples of the functionalities of GATE. In
fact, it consists of three principal components which
enable the execution of a host of adaptable language
engineering tools, whose successful functioning has
been demonstrated in a number of IR tasks throughout
literature.
Despite of GATE is a well know tool that enables NLP,
it is still present in many recent research projects E.g.
21,22,23,24.
The main elements of GATE are comprised of an
architecture for language processing, a Java framework
which forms the backbone of such a system, and a
graphical development environment which allows
manipulation of the framework for language engineers
to build their own personalized language engineering
tools and processing resources. GATE initially comes
with a set of built-in processing resources, referred to in
the platform as ANNIE (A Nearly New Information
Extraction System). These are linguistic tools which
have specific language processing functions 25, namely a
tokeniser, gazetteer, sentence splitter, POS (Part of
Speech) tagger, named entity transducer and an
orthographic name-matcher.
The Gazetteer component of ANNIE is particularly
useful in this architecture, as it consists of a set of
predefined lists of nouns. Each item in the list has been
pre-assigned an attribute, for example, organization,
currency_unit, or manufacturer. The attributes are input
to JAPE grammars (discussed below). This functionality
enables the identification of the resources used in
projects, for example, “IBM Requisite PRO”, or
“CSW”.
When documents are processed by GATE, they are
input to what is referred to as a GATE document
pipeline, and the language processing tasks are
performed sequentially. The language used to modify
the capabilities of the processing resources is called
JAPE. A description of JAPE is given below.

1.3.2. JAPE

Fundamentally, JAPE provides a tool for language
engineers to define the characteristics of the sentences

or phrases which they wish to extract in the particular
application in question. It is a language for matching
GATE annotations to regular expressions, thus it is
essentially using pattern matching to construct more
annotations using finite state autonoma. The patterns are
defined as rules, a JAPE Grammar, which constitute a
finite state machine. The rules are invoked on each text
in sequence when it is input to the GATE document
pipeline, as previously described.
In the current architecture, the first step is the clustering
of the Project History Documents (PHDs) using a
document clustering technique, an overview of which
will be provided below. Once the PHDs have been
grouped, and the input Offer document is grouped with
the most similar set, the PHD which is most similar to
the to the Offer document is determined by automatic
analysis of the sentences which refer to project effort,
time, and resources. It is the application of JAPE rules
which allow such a comparison between relevant
content of the two documents. Therefore, in order to
extract all of the relevant phrases, the JAPE rules search
for all possible sequences of annotations which match
the rules. For the current research, the aim is to
construct rules for phrases which indicate comparability
of projects, such as project size, costs, sector, effort,
time, and resources. Options exist for assigning
priorities to the application of rules, that is, for example,
if several phrases match the rule, only the one which
matches the longest set of annotations from the input is
accepted. In natural language, such a rule may be
written as "If the sequence of tokens 'staff', 'hours' is
preceded by a numerical value annotation, then create a
new Time annotation for the three tokens" This sample
rule will match the phrase "200 staff hours" as a name
of the time involved in the project and annotate it
accordingly, even if this phrase is not included in
Gazetteer lookup lists. Equivalently, the same rule could
be written for the sequence of tokens ‘man’ ‘hours’
preceded by a numerical value. This enables extraction
of all variables which refer to time in hours. Or, for
example, a similar rule could be used to identify that the
phrases “6 team members”, “team of 6” and “team size
of 6” refer to a team size variable. The rules which are
written here in natural language are converted to a
formal JAPE grammar.

Published by Atlantis Press
 Copyright: the authors
 259

 BMR: Benchmarking Metrics Recommender

1.4. Document Clustering Techniques

As mentioned above, the first component of the
architecture groups the PHDs using a document
clustering method. A support vector machine (SVM)
has been used to cluster the documents, however, any of
a number of clustering methods could be applied to
perform document similarity measures.
The first stage of knowledge acquisition and reduction
of complexity concerning a group of objects is to
partition or divide the objects into groups based on their
attributes or characteristics 26.
Document clustering is a form of unsupervised machine
learning, which given a set of input documents, extracts
features from the documents and groups the documents
into clusters based on the presence or absence of the
features. Document clustering has been defined by 27 as
“Cluster analysis is the art of finding groups in data”.
Defined formally, D denotes a domain of documents
and C = {c1, c2, c3, ...c|c|} a set of categories. The pair
(di, cj) represents (document, category). A Boolean
value b � {T, F} is assigned for each pair (di, cj) � D ×
C, where the value T indicates that the document di will
be attributed to class cj, and the value F implies that the
document will not be assigned to the class 28. This
definition has been defined in the context of text
classification, where the set of categories is defined a
priori by the automated classifier user. The essential
difference introduced by text clustering techniques is
that classes are not previously defined, instead the
clustering algorithm constructs the classes based on
feature frequencies and/or weights assigned to features.
Examples of machine learning approaches for text
clustering include bisecting K-means, Support Vector
Machines, Latent Semantic Indexing, Naïve Bayes, K-
medians. Additionally, these techniques may be divided
into two groupings: the K-means method and
agglomerative hierarchical methods. This division may
also be viewed as the division between partitioning
algorithms such as k-means or k-medoid, and
hierarchical algorithms such as Single-Link or Average-
Link 27.

1.4.1. Vector Space Model

The majority of document clustering techniques which
have been proposed in the literature apply the Vector
Space Model 29. The vector space model is an algebraic
model used for information filtering, information
retrieval, indexing and relevancy rankings. It represents

natural language documents (or any objects, in general)
in a formal manner through the use of vectors (of
identifiers, such as, for example, index terms) in a
multidimensional linear space. Each document is
represented by a vector in the term space. The set of
terms is a predefined collection of terms, for example
the set of all unique words occurring in the document
corpus. Relevancy rankings of documents in a keyword
search can be calculated, using the assumptions of
document similarities theory, by comparing the
deviation of angles between each document vector and
the original query vector, where the query is represented
as same kind of vector as the documents.

1.4.2. Neural Networks

A neural network (NN) model is an artificial
intelligence framework which is closely related to
SVMs, as both models involve machine learning. As
with SVMs, the NN is trained to learn from examples.
The techniques are similar in the sense that they both
consist of a black box which can ‘learn’; the feature
values are the input to the box, and the output, the class
the text falls into.

1.4.3. Latent Semantic Indexing

In the SVM model, frequency vectors are normalized
for text length and may be allocated importance
weights. Zipf’s law is the factor that underlies
normalization and the assignment of weights to features
in the SVM calculations, as it is a mathematical model
which assumes that the frequencies of common
linguistic features in texts are high, and that frequencies
decrease proportionally. However, even when weights
are assigned to features, the construction of vectors is
based on the assumption that the features are
independently distributed. The existence of semantic
relations in text such as synonymous and polysemous
words breaches this assumption. Latent Semantic
Indexing (LSI) is a model of text categorization which
attempts to overcome the presence of ambiguous lexical
relations in texts. Sebastiani 30 describes LSI as a
method of dimensionality reduction by term extraction
which exploits the inter-relationships between
synonymous, near-synonymous and polysemous lexical
relations. It is viewed as a dimension reduction
technique because it is a similar term extraction model
to SVMs, but the vectors have a lower-dimensional
space, as their dimensions are generated from the

Published by Atlantis Press
 Copyright: the authors
 260

Á. García-Crespo et al.

patterns of co-occurrence in the dimensions of the
original vectors. The terms extracted represent the
‘latent’ semantic relations in the texts.

1.4.4. Support Vector Machines SVMs

SVMs were alluded as a particular model of machine
learning. In this technique, which was proposed by
Vapnik 31, the model for classification is generated from
the training process with the training data. Owing to its
usefulness, it has been widely adopted in various fields
of classification problems in recent years, including
medical diagnoses 32, tourism projections 33, sound
processing 34 or recommender systems 35.
The SVM algorithm exploits the use of vectors which
model the distributions of features in texts. Each vector
is a point in a n-dimensional space (n is the number of
features) , which can hold either a Boolean value
signifying whether or not the feature exists in the
document, or the frequency of occurrence of the feature
28. The objective of SVM modeling is to define the
optimal line (hyperplane) which divides groups of
vectors into separate categories. In its simplest form,
SVMs can be used to differentiate two categories. The
support vectors are the vectors in closest proximity to
the line. The task is to determine which of these vectors
best describe the division between the two categories.
Diederich and Kindermann 36 refer to the distance of the
hyperplane which separates the two categories as the
maximum interclass distance, the margin.
SVMs can also be used when points are categorized by
a non-linear region, which requires a non-linear model.
Frequency vectors are generally normalized to account
for text length, and the raw feature frequencies or log-
transformed feature frequencies may be assigned

importance weights. The primary advantage of SVMs
for clustering is that they can measure thousands of
features, if necessary all of the n-grams in the text.

2. BMR: Benchmarking Metrics Recommender

The current section describes the architecture of the
system. The component which provides the initial
interaction of the customer with the system is the web-
based user interface, which has functionalities for
uploading two classes of documents: the SPO and PHD.
HDs may be uploaded at company level. For example,
the manager of a software development company can
upload the entire set of PHDs of the company, and
continue to upload them systematically as new products
are developed over time, or he can upload a number of
PHDs which he considers to be related to an Offer
document he is about to upload. All of the documents
uploaded are later stored in two separate repositories: a
rich PHD repository and an SPO repository. Metrics are
extracted from each PHD during the Natural Language
Processing phase, and stored in a Metrics Repository. In
order to clearly illustrate the architecture, the
repositories have been described as three distinct
components. However, the three repositories together in
fact comprise a single repository, and may be
conceptualized as one repository with three different
parts.
Each document which is input to the system, regardless
of whether it is a SPO or a PHD, is first subject to text
processing. This is the first step of the algorithm. The
specific components of the architecture are described in
Fig. 1, which illustrates the architecture. Mentioned
architecture consists of the following components:

Published by Atlantis Press
 Copyright: the authors
 261

 BMR: Benchmarking Metrics Recommender

Text processor
This component converts each input document to plain
text (including tables or graphics which contain text),
and extracts the sections of each document which
contain information relevant for measuring document
similarity. These sections are then concatenated in order
to re-construct the document into its final format, prior
to its input to the GATE NLP pipeline. In existing NLP
software architectures, often GATE is used to perform
all text processing required. However, in the current
architecture, in order to extract relevant parameters,
specific sections of the PHDs, SPOs, and Metrics
documents which contain parameters related to project
comparability are required. Thus, it was decided to carry
out pre-processing of the documents in order to parse
only the sections needed for comparison. This also
contributed to computational efficiency, by reducing
processing time. Three parts of the document content
are relevant for extraction:

a) Description of the Project
b) Software Production factors such as effort,

time, resources, costs, and industry sector.
These comprise the comparability variables.

c) Text relating to project metrics – those which
comprise part of the content of the PHDs. The
specific metrics extracted are later transferred
to a separate repository containing project
metrics relevant to each particular document,
during the Natural Language Processing phase.

Natural Language Processor
Each text which is uploaded becomes part of a GATE
document pipeline. All of the NLP tasks in GATE
which are required in any particular application can be
executed on each of the documents in the pipeline in
sequence. In the architecture, GATE libraries are used
to perform the following NLP tasks:

a) Syntactic annotation of noun phrases, using
GATE’s NP_Chunker

b) Application of JAPE rules to extract all phrases
related to project comparability. The only
comparability factors extracted which do not
have a numerical value associated with them
are the variables which describe the industry
sector. These are annotated noun phrases such
as “fish stock management application”, or
“bookmarking web application”. Gazetteer lists

!

!"#$#%&'&()%

*'+#"

,

-

.

/

"

0

1

(

&

#

0

&

2

"

#

"#$%&'()*+#

,-.+#/$(+

/334(0'&()%55

*'+#"

!

!

!

6'&'5

*'+#"

0+1. 2#3(+**3#

4$.5#$67 8-95:+

2#3(+**3#

;3<%$.'='6'.> ?-9'-+

@+.#'(* 2#3(+**3#

A+(3<<+

-B+#

C5((+**

D-$6>E+#

!76

86

FG7

A+%3*'.3#>
@+.#'(*

A+%3*'.3#>

2HG7

A+%3*'.3#>

Fig. 1. BMR Architecture.

Published by Atlantis Press
 Copyright: the authors
 262

Á. García-Crespo et al.

have been added to GATE with phrases which
define each sector. The lists have been grouped
according to EU industry specifications
(http://ec.europa.eu/enterprise/sectors_en.htm).
If the industry is not mentioned or has not been
annotated correctly by a JAPE rule, it is
omitted.

The GATE NLP component results in the storage of
each PHD and each SPO in their respective repositories,
with an associated list of comparability variables. For
example, PHD DOCID1 will have a list of variables
with corresponding values, for example, Variable Q,
Value 100, Variable R, Value 200, Variable S, Value
3…Variable N, Value n. Each SPO document will have
an ID and a similar associated list of variables.
The metrics from each PHD uploaded are also extracted
and stored in a Metrics repository. In the current
research work, this process is referred to as Metrics
Extraction. The repository will contain a list of metrics
associated with each PHD, for example, PHD DocID1
will have Metric 1, Value a, Metric 2, Value b…Metric
n, value x.
Comparability Engine
The annotated documents are the input to a
comparability engine. In the comparability engine, the
PHDs are clustered using a text clustering algorithm.
Each time a PHD is added to the repository, the
document is clustered with the group of PHDs to which
it is most similar, through the application of a Support
Vector Machine algorithm based on lexical content. The
comparability engine has three main functions:

a) Clustering of each PHD document using a
Support Vector Machine

b) Clustering the input Offer Document with the
most similar set of PHDs

c) Gauging comparability of the Offer document
with each of the PHDs in this set, based on
comparability variables.

The output of the execution of the Comparability
Engine results in the following structure. The metrics
associated with each PHD have already been stored in a
metrics repository, as they were extracted from each
PHD during the text processing phase. Therefore, the
output of the comparability engine is the PHD which is
most similar to the input Offer document (based on the
values of the comparability variables), and its associated
metrics. The most appropriate metrics from the most
similar PHD are then recommended to the user by the

metrics recommender. The metrics engine will now be
described.
Metrics Processor
The metrics processor consists of two components: a
Metrics Recommender, and a Success Analyzer.
The Metrics Recommender proposes the metrics for the
input Offer document to the user, based on the variables
described above. It is at this point where the novelty of
the system is exhibited: not only does the system
recommend suitable metrics, but the user can modify his
SPO based on the metrics recommended, and a
subsequent evaluation of the success of the metrics
suggested for the Offer is performed. This is carried out
by the Success Analyzer.
The Success Analyzer can be described as follows. As
part of the metrics recommender phase, the user
modifies his Offer document based on the new metrics
recommended. He then carries out the software
development process according to the revised Offer
document, with new values for each variable. This
results in the production of a PHD. The values of the
comparability variables for the following documents are
thus available: SPO (Version 1), SPO (Version 2), and
PHD (based on Version 2). Thus, it is possible to apply
an algorithm to perform the following comparisons: the
similarity of SPO V1 and SPO V2, the similarity of
SPO V1 and the PHD, and the similarity of SPO V2 and
the PHD. The metrics in the PHD are then assigned
weights according to their actual importance in SPO V2.
The metrics and their corresponding weights are then
transferred back to the metrics repository.
A simple mathematical algorithm is applied to
determine the distance between the comparability
variables, and thus, the similarity of the variables in the
documents. For example, it is clearly possible to
evaluate that two projects with respective team sizes of
6 and 10 are more similar than two projects of team size
6 and 150. During the execution of the algorithm, it may
result from the processing of the values in the PHD
(generated from Version 2 of the Offer document) that
in fact the value associated with the metric “New
Recruitment Rates” in the PHD is high, indicating the
importance of this metric. This leads to the consequent
assignment of weights accordingly.
In future research, it is intended to evaluate the effect of
a number of weighting schemes on the performance of
the architecture (E.g. 37, 38).

Published by Atlantis Press
 Copyright: the authors
 263

 BMR: Benchmarking Metrics Recommender

The objective of the system is achieved, as the most
appropriate metrics are recommended based on
principally numerical comparability variables, and
subsequently assigned importance weights as a measure
of their suitability. The weights are continually adjusted
based on the variables, thus as the volume and range of
PHDs and SPOs in the repositories increase, the
appropriateness of the metrics correspondingly becomes
more refined.
3. Use case scenario

The use of the BMR architecture presents two distinct
use case scenarios, which can be differentiated by the
type of document under processing. The first use case
which illustrates the function of the tool is the
processing of the PHD. The processing of the PHD
document enables the user to generate a repository of
metrics and establish the variables associated with each
document. It also allows the user to process a PHD
which may be part of a batch of PHDs produced in the
company, or the result of a project currently being
carried out in the company, with the objective of
uploading several documents in order to generate
accurate data, and keep the repository up to date. The
second use case scenario enables the user to upload an
Offer document in order to receive metrics
recommendations for a prospective project, once the
first completed version of the Offer is prepared.
In order to set the scene for the use case, it is assumed
that the PHD repository is already populated, and that
the repository of the metrics extracted from the PHDs
analyzed has been created, including the weights of the
metrics as a function of their suitability for being used
in projects. At this point, the company QMECC
(fictional name) has drafted an offer document entitled
OD_1. The offer is a document outlining the work plan
for the parameterization of an ERP (Enterprise Resource
Planning) system in the environment of an editorial
company, in particular, focusing on billing and stock
management. In order to carry out the customized tasks,
it is established that a group of 7 consultants is required
(2 senior, 5 junior), lead by a project leader over a 3
month time period, with a total effort of 1 month per
staff member, in the case of the project leader, 2 months
per staff member for each of the senior consultants, and
3 months per staff member for each of the junior
employees.
Using the BMR Graphic User Interface, the document is
uploaded and temporarily stored on the server, with its

pending destination being the text processing
component. The text processor converts the file to plain
text and extracts the sections of the document which
contain the details of the comparability variables
relevant for NLP processing. Thus, the output is a plain
text file, which contains the relevant sections of the
SPO. This intermediate product is sent to the NLP
component, which, in the case of the PHD documents,
extracts metrics, and in the case of the both the PHD
and the SPOs, determines the comparability variables
and their values. Once this process in completed
(described in the Architecture section), it is established
which cluster of PHDs is most similar to the SPO.
Subsequently, the SPO is compared to all of the
documents in this cluster, in order to determine to which
PHD it is most comparable. Once the most comparable
PHD is established, the Metrics Processor makes a
recommendation of metrics, which it is able to extract
from the Metrics Repository. The repository contains
the metrics associated with all of the PHDs in the cluster
to which OD_1 is most similar.
With the objective of ensuring traceability of the
recommendations, not only is the Offer document
stored, but the metrics which have been recommended
are also stored. At this moment, using the metrics
information provided, the user has the possibility to
incorporate the metrics recommended into his project
planning, and subsequently upload a new version of the
SPO. The variables in the new version of the SPO may
have changed, based on the metrics previously
recommended.
Suppose that the metrics relating to staff productivity
which were suggested have implicated a mayor increase
in the number of hours required by the project leader in
client supervision tasks (Metric MT1), corresponding to
1.5 months of staff hours. This circumstance implies a
significant additional cost for the company. Based on
this analysis, the user can incorporate SPO document
OD_2 to the repository.
If the offer presented is accepted by the client, QMCC
has the possibility to reload the system with the PHD of
the project which it has undertaken. Thus, at this point,
the system contains OD_1 and OD_2, the PHD and their
associated variables. OD_2 is uploaded and processed
by the components in the usual way the system
processes documents, but with the final objective of
enriching the PHD repository. It is evident that the
metrics processing phase represents an extremely novel

Published by Atlantis Press
 Copyright: the authors
 264

Á. García-Crespo et al.

function. The metrics processor, aided by the output of
the NLP component, locates and stores the metrics
extracted from the PHD in the Metrics Repository. The
subsequent task consists of an examination of the
success of the metrics specified in OD_1 and OD_2, and
a comparison with the actual metrics in the content of
the PHD, which were specified upon termination of the
project.
In the current SPO of QMECC, it can be assumed that
the metric recommended for MT1 was 20 days per staff
member, while in the PHD, the value transpired to be 19
days per staff member. Additionally, regarding the
effort variables, they changed from 1 month per staff
member in OD_1 to 1.5 months in OD_2, in the case of
the project leader. However, the PHD indicated that the
actual number of months for this worker was 1.4.
Supposing that this was the only metric indicated, the
Success Analyzer would have the objective to evaluate
the MT1 metric according to how valuable it was
considered, and assign a weight accordingly.
4. Conclusions and future work

During the last decades, the specification of software
metrics has arisen as one of the possible solutions to the
software crisis. Initiatives have been produced to
extract, structure and apply software metrics in
organizations based on internal data and external
projects. In this paper, on the one hand, we have
presented a novel initiative based on the success of
software metrics, and on the other hand, on the use of an
organization’s own information. With this
approximation, the initiative is based on the data and
metrics produced in the organization itself, whose
current situation is reacted to by the recommendation of
the most appropriate metrics.
At the point of the development of the framework, one
of the first decisions which was required to be taken was
the establishment of a set of metrics which were
considered applicable. In this way, and due to the
importance attached to personnel factors, it was decided
to focus on these factors as those which would be
recommended, selecting size, time, and cost metrics,
among others. Particularly, those parameters which are
a significant indication of the comparability of projects
and are crucial decision factors for a corporation.
Numerous possibilities for future research work arose
during the current research. With regard to the
clustering of the PHD documents, it is intended to apply
a supervised learning technique with the categories of

the PHD documents established a priori, in order to
measure the effect on the recommendation of metrics.
Precision and recall measures may then be applied in
order to evaluate the performance of the categorization.
It may also be possible to build on 20 work and construct
rules for the values of the variables extracted using a
genetic algorithm, and use the rules generated to
recommend metrics, by assigning the most appropriate
metrics for the rules in each classification region.
Concerning the extraction of project parameters,
additional variables which indicate project similarity
could be extracted to determine their effect on the
recommendation of metrics, by the inclusion of more
complex JAPE rules. Additional metrics could be stored
in the metrics repository in order for the system to be
able to recommend metrics for a larger range of project
types. It is also intended to test the application of
different algorithms for assigning weights to metrics. A
further objective of future work is to collect and
evaluate user feedback about their experiences with
using the system.
Acknowledgements

This work is supported by the Spanish Ministry of
Industry, Tourism, and Commerce under the project
SONAR (TSI-340000-2007-212), GODO2 (TSI-
020100-2008-564) and SONAR2 (TSI-020100-2008-
665) and the MID-CBR project of the Spanish
Committee of Education & Science (TIN2006-15140-
C03-02).
References

1. P. Hsia, Making Software Development Visible, IEEE
Software, 13 (3) (1996) 23–26.

2. M. Butcher, H. Munro and T. Kratschmer, Improving
Software Testing via ODC: Three Case Studies. IBM
Systems Journal, 41 (1) (2002) 31–44.

3. L.H. Putnam and W. Myers, Five Core Metrics: The
Intelligence Behind Successful Software Management.
(Dorset House Publishing, NY, 2003).

4. V.R. Basili, Data collection, validation, and analysis. In
Tutorial on Models and Metrics for Software
Management and Engineering, ed. V. R. Basili (IEEE
Computer Society Press, CA, 1980), pp. 310-313.

5. B. Boehm, Software Engineering Economics. (Prentice-
Hall, Englewood Cliffs, NJ, 1981).

6. T. Gilb, Software Metrics. (Chartwell-Bratt, Cambridge,
Mass, 1976).

7. N.E. Fenton and M. Neil, Software Metrics: Successes,
Failures and New Directions, The Journal of Systems and
Software, 47(2/3) (1999) 149-157.

8. F. Akiyama, An Example of Software System
Debugging, Information Processing, 71 (1971) 353-379.

Published by Atlantis Press
 Copyright: the authors
 265

 BMR: Benchmarking Metrics Recommender

9. N.E. Fenton and S. Pfleeger. Software Metrics: a
Rigorous and Practical Approach (Thomson Computer
Press, 1997).

10. R.T. Futrell, D.F. Shafer and L.I. Safer, Quality Software
Project Management. (Prentice Hall, Englewood, NJ,
2002).

11. B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.
Clark, B. Steece, A.W. Brown, S. Chulani, S. and C.
Abts, Software Cost Estimation with COCOMO II.
(Prentice Hall, Upper Saddle River, NJ, 2000).

12. R. S. Pressman, Software Engineering: A Practitioners
Approach (McGraw Hill, New York, NY, 2005).

13. S. McConnell, Professional Software Development.
(Addison-Wesley, Reading, MA, 2003).

14. W. A. Harrison, Flexible method for maintaining
software metrics data: a universal metrics repository, The
Journal of Systems and Software 72 (2) (2004) 225–234.

15. Y. Zhang and D. Sheth, Mining Software Repositories for
Model-Driven Development, IEEE Software, 23 (1)
(2006) 82-90.

16. R. Grishman, Information Extraction: Techniques and
Challenges, In Proceedings of the International Summer
School on Information Extraction: A Multidisciplinary
Approach to an Emerging Information Technology, ed.
M.T. Pazienza, Lecture Notes in Artificial Intelligence
1299 (1997) 10-27.

17. P. Lutsky, Information Extraction for Validation of
Software Documentation, In Proceedings of the 13th
international conference on Industrial and engineering
applications of artificial intelligence and expert systems:
Intelligent problem solving: methodologies and
approaches, ed. R. Loganantharaj, G. Palm, M. Ali,
Lecture Notes in Computer Science 1821 (2000) 29-60.

18. J. Pustejovsky, The Generative Lexicon. (MIT Press,
Cambridge, MA, 1995).

19. Arbortext, Inc. Adept Online Help, Version 8.2., 1999.
20. J.L. Álvarez-Macías, J. Mata-Vázquez and J.C.

Riquelme-Santos, Data Mining for the Management of
Software Development Process, International Journal of
Software Engineering and Knowledge Engineering, 14
(6) (2004) 665-695.

21. R. Gacitua, P. Sawyer and P. Rayson, A flexible
framework to experiment with ontology learning
techniques, Knowledge-Based Systems, 21 (3) (2008)
192-199.

22. Y. Li, K. Bontcheva and H Cunningham, Adapting SVM
for data sparseness and imbalance: a case study in
information extraction, Natural Language Engineering,
15 (2009) 241-271.

23. H. Harkema, J.N. Dowling, T. Thornblade and W.W.
Chapman, ConText: An algorithm for determining
negation, experiencer, and temporal status from clinical
reports, Journal of Biomedical Informatics, In Press
2009.

24. A. Roberts, R. Gaizauskas, M. Hepple, G. Demetriou, Y.
Guo, I. Roberts and A. Setzer, Building a semantically

annotated corpus of clinical texts, Journal of Biomedical
Informatics, In Press 2009.

25. H. Cunningham, GATE, a General Architecture for Text
Engineering, Computers and the Humanities, 36 (2)
(2002) 223-254.

26. R.K. Brouwer, Clustering feature vectors with mixed
numerical and categorical attributes, International
Journal of Computational Intelligence Systems 1 (4)
(2008) 285-298.

27. L. Kaufman and P. Rouseeuw, Finding Groups in Data:
An Introduction to Cluster Analysis (John Wiley and
Sons, New York, NY, 1990).

28. K. H. Lee, Text Categorization with a Small Number of
Labeled Training Examples. Ph.D. thesis, School of
Information Technologies, University of Sydney 2003.

29. G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Journal of Information
Processing and management, 24 (5) (1988) 513-523.

30. F. Sebastiani, Machine Learning in Automated Text
Categorization, ACM Computing Surveys 34 (1) (2002)
1-47.

31. V. N. Vapnik, The nature of statistical learning theory
(Springer, New York, NY, 1995).

32. E.D. Übelli, Multiclass support vector machines for
diagnosis of erythemato-squamous diseases, Expert
Systems with Applications 35 (4) (2008) 1733–1740.

33. X. Xin, R. Law, T. Wu, Support Vector Machines with
Manifold Learning and Probabilistic Space Projection for
Tourist Expenditure Analysis, International Journal of
Computational Intelligence Systems 2 (1) (2009), 17-26.

34. X.Y. Wang, P. Niu and W. Qi, A new adaptive digital
audio watermarking based on support vector machine.
Journal of Network and Computer Applications 31
(2008) 735-749.

35. A. García-Crespo, J.M. Gómez-Berbís, Colomo-Palacios
and F. García-Sánchez, Using Support Vector Machines
for feature-oriented profile-based recommendations,
International Journal of Advanced Intelligence
Paradigms 1 (4) (2009) 418-431.

36. J. Diederich and J. Kindermann, Authorship Attribution
with Support Vector Machines. Applied Intelligence 19
(1/2) (2003) 109–123.

37. R. Jin, C. Falusos, A.G. Hauptmann, Meta-scoring:
automatically evaluating term weighting schemes in IR
without precision-recall, In Proceedings of the 24th
annual international ACM SIGIR conference on
Research and development in information retrieval, eds.
D.H. Kraft, W.B. Croft, D.J. Harper, J. Zobel (New
Orleans, Louisiana, United States, 2001) pp. 83-89.

38. P. Pantel and D. Lin, Discovering word senses from text,
In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining,
eds. O. R. Zaïane, R. Goebel, D. Hand, D. Keim, R. Ng
(Edmonton, Alberta, Canada, 2002), pp. 613-619.

Published by Atlantis Press
 Copyright: the authors
 266

