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Abstract 

The performance assessment of an engineered solution for the disposal of radioactive wastes is based on 
mathematical models of the disposal system response to predefined accidental scenarios, within a probabilistic 
approach to account for the involved uncertainties. As the most significant potential pathway for the return of 
radionuclides to the biosphere is groundwater flow, intensive computational efforts are devoted to simulating the 
behaviour of the groundwater system surrounding the waste deposit, for different values of its hydrogeological 
parameters and for different evolution scenarios. In this paper, multilayered neural networks are trained to simulate 
the transport of contaminants in monodimensional and bidimensional aquifers. The results obtained in two case 
studies indicate that the approximation errors are within the uncertainties which characterize the input data. 

Keywords: Neural networks, performance assessment of radioactive waste repositories, groundwater contaminant 
transport, advection-dispersion. 

1. Introduction 

The demonstration of the safe disposal of radioactive 
wastes over the required long time horizons is regarded 
as a prerequisite for the further development of nuclear 
energy programmes in many Countries. 1 The presence 
of long-lived fission products and actinides in the waste 
imposes confinement times of the order of many 
thousands of years. 2  

The sites suitable for hosting repositories for the 
confinement of nuclear wastes must be characterized by 
hydro-geologic properties which guarantee their safe 
performance. 3 The danger is that the contamination 
carried by the percolating water through the engineered 
containment barriers reaches the groundwater, which 
represents the most important vector for the transport of 
contaminants to the biosphere. 1 

The uncertainties in the hydro-geological 
characterization of the disposal sites and in its future 
evolution are such that the analysis of the safety 
performance of waste repositories requires an 
enveloping probabilistic approach based on predictive 
mathematical models for representing the system 
behaviour for many values of the uncertain hydro-
geological parameters and in many different evolution 
scenarios, normal as well as altered by stochastic 
phenomena like earthquakes, tectonic displacements, 
human intrusions and the like, which can accelerate 
migration of the radionuclides towards the biosphere. 4-5 

Among the various models of groundwater 
contaminant transport, in this paper we focus on the 
well known advection-dispersion model, based upon the 
energy and mass conservation laws and the assumption 
of validity of Fick’s law to describe the mechanisms of 
hydrodynamic dispersion. 6-7  
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The numerous model evaluations required by the 
probabilistic performance assessment typically lead to 
very long computing times.8 For this reason, it is 
desirable to find some efficient algorithms to obtain 
reasonably approximate outputs in a short time, with the 
approximation errors being bounded by the uncertainty 
resulting in the output from the propagation of the input 
uncertainty. 

In this paper, neural networks (NN) are developed 
for the fast, approximate solution of the advection-
dispersion model. The networks are trained to predict 
the space-time contaminant distribution in two case 
studies: a monodimensional transport problem whose 
data and parameters correspond to a repository located 
at Mol (Belgium), chosen as the reference site for trial 
assessments of the feasibility of disposal of HLW in 
clay formations 9; a case of bidimensional transport 
taken from the literature. 10 The concentration output 
profiles obtained by the neural networks are compared 
to those given by a numerical code based on a finite 
element method (MCB2D, Multiple Cell Balance 2-
Dimensional). 10  

In Sections 2 and 3 the advection-dispersion model 
and the main features of the neural networks here 
employed are briefly described, for completion of the 
paper; in Section 4, the results of the networks’ training 
for the two case studies considered are discussed, 
particularly with respect to accuracy and speed of the 
method. The paper closes with some concluding 
remarks in Section 5. 

2. The Advection-Dispersion Model 

The advection-dispersion model describes contaminant 
transport in groundwater by means of partial differential 
equations derived from energy and solute mass 
balances. The fundamental physical hypothesis of the 
model is that contaminant migration is due to two 
concomitant phenomena: advection and hydrodynamic 
dispersion. The process by which solutes are transported 
by the bulk motion of the flowing groundwater is 
known as advection. Owing to advection, nonreactive 
solutes are carried at an average rate equal to the 
average linear velocity of the fluid v. There is a 
tendency, however, for the solute to spread out from the 
path that it would be expected to follow according to the 
advective hydraulics of the flow system. This spreading 
phenomenon is called hydrodynamic dispersion. It 
causes dilution of the solute, and occurs because of two 

concurrent processes: mechanical dispersion and 
molecular diffusion, due respectively to disuniformities 
in the microscopic velocity field and in the solute 
concentration. 

From the modeling point of view, a two-component 
fluid (solute and solvent) is here considered for 
simplicity. The solute mass balance in a representative 
elementary volume of the saturated porous medium 
leads to the following partial differential equation 6: 

ICvdiv
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∂
∂

                    (2.1) 

where C is the solute concentration [kg/m3], vS its 
velocity and I is the rate of production of the solute per 
unit volume [kg/m3s]. Solute diffusion is described by 
the mass diffusion flux J: 

J = C (vs – v)                          (2.2) 

where v is the mean flow velocity and is related to the 
hydraulic gradient ∇h through Darcy’s empirical law: 

h
n

∇−= K
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where K is the hydraulic conductivity of the medium 
and n its porosity (given by the ratio between the void 
volume and the total volume); v is also called Darcy’s 
velocity. Mass diffusion is assumed to occur according 
to Fick’s law, which states the proportionality between 
the diffusion flux and the concentration gradient, 
through a proportionality constant called molecular 
diffusion coefficient Dd, so that diffusion occurs from 
higher to lower concentration zones 6: 
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where ρ is the fluid density.  
From Eqs. (2.2), (2.4) and the mass balance (2.1), 

the advection-dispersion equations are obtained. In 
Cartesian coordinates and assuming incompressibility of 
the fluid: 
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In Eq. (2.5), Dij is the element of a second-rank 
symmetric tensor D called hydrodynamic dispersion 
coefficient, which is the sum of a mechanical dispersion 
term and of a molecular diffusion term (function of the 
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molecular diffusion coefficient Dd). The hydrodynamic 
dispersion coefficient is also related to Darcy’s velocity 
through a proportionality factor α, called dispersivity.  

The source/sink term I in Eq. (2.5) can be due to 
various phenomena such as solute injections or 
extractions, chemical reactions and radioactive decay: 
here the attention is focused on the adsorption and ion 
exchange processes which occur at the interface 
between solid and liquid phases. The negative charges 
on a solid surface may attract the cations dissolved in 
the liquid phase, which may be adsorbed onto the solid 
surface thus reducing the contaminant concentration in 
the liquid; on the other hand, the contaminant ions in the 
solid may enter the liquid through the solid surface and 
increase the contaminant concentration in the liquid.  

To account for these effects of interchange, we must 
simultaneously consider the mass balance within the 
solid and liquid phases: 
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where F [kg/m3] is the contaminant concentration in the 
solid and f(C,F) [kg/m3s] is the mass of contaminant 
transferred from solid to liquid, per unit time and per 
unit volume of porous media.  
Several expressions have been suggested for f(C,F) for 
different adsorption cases; in this paper, the usual linear 
equilibrium isotherm relationship is considered which 
assumes that the solute concentration in the solid phase 
is directly proportional to the concentration in the liquid 
phase: F=βC, where β is known as the distribution 
coefficient. With this hypothesis, the contaminant 
concentration in the liquid phase turns out to be 
described by the following equation: 
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where β
n

n
R

−+= 1
1  is called the retardation factor 

and describes the slowing down in contaminant 
propagation caused by adsorption. Since R>1, both the 
hydrodynamic dispersion coefficient and the mean flow 
velocity are decreased and, hence, the dispersion 
process is weakened.  

3. The Supervised, Feedforward Neural Network 

Neural networks are systems composed of simple 
processing elements (nodes) linked by weighted 
connections. In its simplest and most popular form, the 
multilayered feedforward neural network consists of 
three layers of processing elements: the input, the 
hidden and the output layers, with ni, nh and no nodes 
respectively. The signal, which consists of ni real values 
feeding the input nodes, is processed forwards from the 
input to the output layer (Fig. 3.1). Each node collects 
the sum of the output values, weighted by the 
connection strengths, from all the nodes of the 
preceding layer, processes this information through a 
sigmoidal activation function ( ) ( ) 1

1
−−+= xexf  and 

then delivers the result to all connections towards the 
nodes of the successive layer. In the present work, both 
input and hidden layers have the additional bias node 
which acts as a threshold in the argument of the 
activation function and whose output always equals 
unity. The natural choice of the number of nodes no in 
the output layer is to take as many nodes as the number 
of quantities to be estimated in the problem. On the 
contrary, there are no set rules for choosing the numbers 
of nodes in the other two layers: here we followed a 
rational criterion for which the number of input nodes ni 
has been chosen equal to that of the data variables 
which affect the output, while the number of hidden 
nodes nh has been kept as low as possible in view of the 
need of building fast-computing models.  

The values of the connection weights are randomly 
initialized and then fine-tuned through an iterative 
training procedure. In this work, the popular error back-
propagation algorithm has been adopted for the 
training. 11 In short, a set of Np input and corresponding 
output patterns are repeatedly presented to the network 
and the values of the connection weights are iteratively 
adjusted so as to minimise the average squared output 
deviation error function, or energy function, over all 
training patterns and all no outputs, defined as: 
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where tpl and opl are the true and the network-computed 
values of the l-th output node, to the p-th pattern 
presented.  

Through this training procedure, the network is able 
to build an internal representation of the input/output 
mapping of the problem under investigation.  
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The success of training strongly depends on the 
normalization of the data and on the choice of the 
training parameters. Concerning the normalization, the 
Np patterns of the training set can be thought of as the 
rows of an (Np, ni) matrix; since the ni data in each 
pattern may be largely different, it is common to 
suitably normalize the data appearing in each column, 
by linearly mapping them in a given interval (e.g. [0.2, 
0.8]). 

After the training is completed, when new input 
patterns are presented the network recalls the 
information stored in the connection weights to produce 
the corresponding output, coherent with the internal 
representation of the input/output mapping.  

Notice that the nonlinearity of the sigmoidal 
function of the processing elements allows the neural 
networks to learn arbitrary nonlinear mappings. 
Moreover, each node acts independently of all the 
others and its functioning relies only on the local 
information provided through the adjoining connections. 
In other words, the functioning of one node does not 
depend on the states of those other nodes to which it is 
not connected. This allows for efficient distributed 
representation and parallel processing, and for an 
intrinsic fault-tolerance and generalization capability. 
These attributes render the neural networks a powerful 
tool for signal processing and nonlinear mappings. 12-14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1. Scheme of a three-layered, feedforward neural 
network. 

4. Simulating Contaminant Transport via 
Neural Networks 

In this Section, neural networks are trained to simulate 
the transport of contaminant in groundwater for two 
case studies of monodimensional and bidimensional 
aquifers. Through an appropriate training procedure the 
networks learn to predict the values of contaminant 
concentration (output) at given locations and times, 
from knowledge of the input hydro-geological 
parameters of the medium (input). 

4.1.  Monodimensional case 

A transport problem in a monodimensional, 
homogeneous, isotropic and semi-infinite aquifer is 
considered; the hydro-geological characteristic 
parameters are relative to the upper aquifer of the Mol 
site in Belgium. 9 The study is focused on the transport 
of the radionuclide Np-237, selected among others 
because of its nuclear, physical and transport 
characteristics (half-life - 2.14⋅106y -, migration 
capability, radiotoxicity) which make it a most 
hazardous contaminant for radiological impacts.  

The source term is given by a point source of 
1.5⋅1011 Bq/m3 of Np-237 located in the origin of the 
aquifer: this quantity corresponds to the content of 1 ton 
reprocessed fuel which dissolves completely and 
instantaneously after the canister corrosion. 

The objective is to train a set of neural networks for 
the prediction of the Np-237 contaminant spatial 
distribution at two times of interest for short and long 
term safeguard respectively: t=50d and t=104 y. 

Due to the heterogeneities in the porous medium, 
the hydro-geological parameters (hydraulic conductivity 
K, Darcy’s velocity v, retardation factor R, dispersivity 
α) are affected by uncertainty: this is taken into account 
by assigning proper probability distributions to the 
various parameters. 9 

To analyze the uncertainty in the output 
concentration due to the uncertainty in the input 
parameters, a sensitivity study has been performed with 
the objective of establishing an upper bound of 
acceptable network approximation error, defined as the 
discrepancy between the network predicted output and 
the true concentration value divided by the true value 
(relative error). A high-order Monte Carlo sensitivity 
analysis 15 was performed varying one parameter at the 
time within its range of variability and keeping all other 
parameters at three different levels corresponding to 

. . .

. . .

. . .

bias

bias

input data

input
layer

hidden
layer

output values

output
layer
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their central, minimum and maximum values. A large 
number of preliminary tests allowed us to identify 
Darcy’s velocity v and the retardation factor R as the 
major contributors to the output concentration spatial 
distribution variability, defined in terms of the 
sensitivity index IS: 

( ) ( )
( )∑

=

−
=

N

i imed

ii
s

xC

xCxC

N
I

1

minmax1           (4.1) 

where xi, i=1, 2,..., N, is the coordinate of concentration 
observation and Cmin, Cmed and Cmax are the 
concentrations corresponding to the minimum, medium 
and maximum parameters’ values, respectively. A more 
detailed analysis showed that the variability of v leads to 
an output variability of up to 200%, whereas R causes 
an uncertainty in the output of about 85%. This latter 
value was taken as the upper limit to the acceptable 
relative error in the neural networks predictions.  

For what concerns the prediction at t=50d, the 
patterns for training have been generated by means of 
Ns=200 simulations with the code MCB2D which 
resolves numerically the advection-dispersion equations 
for a given set of input data. Each pattern contains five 
inputs, namely the coefficient of adsorption β, the 
hydraulic conductivity K, the longitudinal dispersivity 
αL, the effective velocity v/R and the coordinate of the 
concentration observation point xp, and one output, the 
concentration value at the observation point, C(xp). Each 
one of the 200 simulations generates Np patterns, one for 
each observation point xp, p=1, 2, ..., Np. 

As a first attempt, one single neural network was 
trained for the whole range of variability of the input 
parameters, but this led to poor specialization of the 
network and corresponding relative prediction errors of 
the order of 100%. To specialize the network models, 
training was repeated on narrower subranges of the 
input parameter v/R, which in the previous sensitivity 
analysis was found to be the most critical for the output 
variability. More precisely, four networks were devised 
and their trainings optimized with respect to the network 
parameters, learning rate η, momentum α, number of 
hidden nodes nh, pattern repetitions nr. The results of the 
trainings are shown in Table 4.1, in which ε indicates 
the network average relative error on the patterns of the 
training set, defined as: 
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where xs
p is the p-th concentration observation point in 

the s-th simulation.  
After training, the networks have been tested on 

6300 new patterns; Table 4.1 shows the parameter 
values optimizing the networks and the average relative 
prediction error for each network; Figures 4.1-4.4 show 
the good match between the numerical and the networks 
solutions for parameter values within the four different 
ranges. 
 

Table 4.1. Networks parameters and performances. 
 

 
Network 
(v/R range 

[m/d]) 

 
ηηηη 

 
αααα 

 
nh 

 
nr 

 
εεεε 

 
εεεεtest 

 
1 

(4⋅10-5÷6⋅10-4) 

 

 
0.4 

 
0.8 

 
7 
 

 
10000 

 
15.79% 

 
15.51% 

 
2 

(5⋅10-4÷1.2⋅10-3) 

 
0.6 

 
0.9 

 
6 

 
50000 

 
12.20% 

 
12.19% 

 

 
3 

(1⋅10-3÷2⋅10-3) 

 
0.6  

 
0.9 

 
6 

 
50000 

 
10.34% 

 
10.93% 

 
4 

(1.5⋅10-3÷3⋅10-3) 

 
0.6 

 
0.9 

 
8 

 
50000 

 
5.57% 

 
6.26% 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1. Network 1, v/R=4.34⋅10-4m/d, εtest=11.9% 
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Fig. 4.2. Network 2, v/R=6.45⋅10-4m/d, εtest=10.7% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3. Network 3, v/R=1.12⋅10-3m/d, εtest=12.9% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4. Network 4, v/R=2.58⋅10-3m/d, εtest=5.0% 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5. Network 1, v/R=5.6⋅10-4m/d, εtest=0.4% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.6. Network 2, v/R=0.8⋅10-3m/d, εtest=0.36% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.7. Network 3, v/R=1.3⋅10-3m/d, εtest=0.89% 
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Fig. 4.8. Network 4, v/R=1.9⋅10-3m/d, εtest=1.51% 

 
For the case of t=104y, a different strategy was 

followed for the training of the neural networks: based 
on the gaussian shape of the concentration profiles, the 
networks have been trained to give in output the 
parameters µ, σ and the area A of the gaussian profile, 
the inputs being the coefficient of adsorption β, the 
hydraulic conductivity K, the longitudinal dispersivity 
αL and the effective velocity v/R.  

A set of NS= 200 simulations were performed with 
the MCB2D code to generate the training patterns. The 
previously successful strategy of training four 
specialized networks on the subranges of v/R was again 
followed and led to satisfactory results on the training 
set, with prediction errors ranging from 0.5% to 1.5%, 
for networks parameters η=0.6, α=0.8, nh=5, nr=50000. 

Tests with about 200 new patterns produced similar 
errors. Figures 4.5-4.8 show the good match between 
the numerical and the network curves, for the four 
specialized networks. 

4.2. Bidimensional case 

An irregular bidimensional geometry simulating a 
confined aquifer between two rivers has been 
considered (Figure 4.9). 10 The flow is assumed to be 
bidimensional, with the upstream river being an 
instantaneous source of contamination injecting into the 
aquifer a concentration of 2000 Bq/m3. 
The prediction of contamination at every location in the 
aquifer is used to study altered evolution scenarios in 
which the hydro-geological parameters values are 
modified. To this aim, two main steps have been 
undertaken. First, the evolution of the contaminant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.9.Aquifer configuration and finite element discretization 
of the problem. 

concentration must be followed up to the time of 
occurrence of the altering event, under the normal 
scenario conditions but still accounting for the 
uncertainty in the hydro-geological parameters. At the 
time of the event occurrence, the concentration values at 
each point in the aquifer constitute the initial conditions 
for the successive evolution of the contaminant in the 
altered scenario, which is characterized by different 
values of the hydro-geological parameters with different 
uncertainty distributions. The second step then consists 
in determining the contribution of each contamination 
sources at every point in the aquifer to the evolution of 
the contamination profile in a given control point, for 
parameter values sampled from the distributions 
characterizing the site after the altering event. 

In the application considered, the stochastic event 
has been assumed to occur at t=3000y and the control 
point has been taken in correspondence of node 24 in 
Figure 4.9. 

For the prediction of the contaminant spatial 
distribution at t=3000y, a set of patterns were generated 
through 300 simulations with the MCB2D code; each 
pattern contains five inputs, coefficient of adsorption β, 
hydraulic conductivity K, longitudinal dispersivity αL, 
effective velocity v/R and the coordinate of the 
observation node xn, and one output, the concentration 
value in the observation node C(xn). Each simulation 
gives N patterns, one for each observation node xn, n=1, 
2, ..., N. 

To predict the concentration profile evolution in the 
control node 24, the networks were trained to predict the 
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concentration time evolutions in every point of the 
aquifer contributing to the contamination in 24 (i.e. all 
the nodes in the upper part of the aquifer, given that the 
flux is directed downward). Because of the great 
variability (two orders of magnitude) of the 
concentration values on the different nodes in the 
domain of interest, this was divided in three layers, 
containing nodes 32-37 and 42-46, nodes 48-53, nodes 
54-62, respectively (see Figure 4.9); one neural network 
was then trained specifically on each of them.  

The parameters for the optimal networks training 
and the average relative errors between the numerical 
and the networks outputs, are summarized in Table 4.2. 
Testing was performed on 3900 new patterns; Table 4.2 
shows the parameter values optimizing the networks 
and the average relative prediction error for each 
network; Figures 4.10-4.12 show the good match 
between the true (numerical code) and the predicted NN 
profiles, for three of the test patterns. 
 

Table 4.2. Networks parameters and performances. 
 

 
 

 
ηηηη 
 

 
αααα 

 
nh 

 
nr 

 
εεεε 

 
εεεεtest 

 
Network 

1 
 

 
0.6 

 
0.8 

 
8 

 
50000 

 
18.76% 

 
18.35% 

 

 
Network 

2 
 

 
0.6 

 
0.8 

 
5 

 
30000 

 
18.55% 

 
19.80% 

 
Network 

3 
 

 
0.6 

 
0.7 

 
6 

 
60000 

 
33.25% 

 
31.84% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.10. Network 1, trained on nodes 32-37 and 42-46 

v/R=8.8⋅10-4m/d, εtest=16.2% 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.11. Network 2, trained on nodes 48-53,                    

v/R= 7.4⋅10-4m/d, εtest=18.9% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.12. Network 3, trained on nodes 54-62,         

v/R=1.1⋅10-3m/d, εtest=31.1% 

 
The successive step of the analysis regarded the 

study of the time evolution of contamination in node 24, 
due to the neighbouring nodes. For simplicity, the 
contribution of only 3 nodes, namely 45, 52 and 56, as 
point sources of 2000 Bq/m3, was considered; one 
network was trained to predict the resulting 
concentration in node 24 due to the initial contamination 
in each of the three nodes 45, 52 and 56, respectively, 
on a set of 24 time instants ranging from 100 to 10000 
years. 

Training patterns were generated through 300 
simulations with the MCB2D code, each pattern 
containing the five following inputs: coefficient of 
adsorption β, hydraulic conductivity K, longitudinal 
dispersivity αL, effective velocity v/R and the 
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observation time instant tp, and one output, the 
concentration value in node 24 at the observation time 
tp, C(tp). Each simulation gives Nt=24 patterns, one for 
each observation time tp, p=1, 2, ..., Nt. 

Table 4.3 shows the parameter values optimizing the 
networks behaviour and the average relative prediction 
error for each network.  
 

Table 4.3: Networks parameters and performances. 
 

 
 

 
µµµµ 
 

 
αααα 

 
nh 

 
nr 

 
εεεε 

 
εεεεtest 

 
Network

N 45 
 

 
0.5 

 
0.8 

 
5 

 
30000 

 
15.36% 

 
19.08% 

 
Network

N 52 
 

 
0.6 

 
0.8 

 
5 

 
50000 

 
6.11% 

 
5.32% 

 
Network

N 56 
 

 
0.6 

 
0.8 

 
4 

 
30000 

 
13% 

 
15.98% 

 

A test on 3600 new patterns gave similar results, as 
shown in Table 4.3. Figures 4.13-4.15 show the 
satisfactory approximation obtained with the three 
networks. 

5. Conclusions 

In this paper, the possibility of using neural 
networks for predicting the space-time distribution of 
contaminant in groundwater has been demonstrated. 
The approach undertaken to guarantee the satisfactory 
accuracy has consisted in training a set of different 
networks to predict the contaminant concentration at 
given times and locations, starting from knowledge of 
the hydro-geological parameters of the hosting medium. 

The application to a monodimensional and a 
bidimensional case has led to predictive relative errors 
of about 10-20%, which are considered acceptable in 
consideration of the uncertainties which propagate from 
the model parameters to its outputs.  

Furthermore, once trained the neural networks take a 
negligible time to compute the output, contrary to the 
numerical codes; as accounting for uncertainties in 
probabilistic performance assessments of radioactive 
waste deposits requires a large number of simulations to 
cover the variability ranges of the input parameters, 
these savings in computer time can be of fundamental 
importance. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.13: Network with source on node 45, v/R=9.4⋅10-4m/d, 

εtest=14.1% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.14. Network with source on node 52, v/R= 8.5⋅10-4m/d, 

εtest=4.7% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.15. Network with source on node 56, v/R=8.5⋅10-4m/d, 

εtest=10.2% 
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