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Abstract

We examine the ARCH-GARCH models for the forecasting of the bond price time series provided by
VUB bank and make comparisons the forecast accuracy with the class of RBF neural network models. A
limited statistical or computer science theory exists on how to design the architecture of RBF networks
for some specific nonlinear time series, which allows for exhaustive study of the underlying dynamics,
and determination of their parameters. To illustrate the forecasting performance of these approaches the
learning aspects of RBF networks are presented and an application is included. We show a new approach
of function estimation for nonlinear time series model by means of a granular neural network based
on Gaussian activation function modelled by cloud concept. In a comparative study is shown, that the
presented approach is able to model and predict high frequency data with reasonable accuracy and more
efficient than statistical methods.

Keywords: Time series, classes of ARCH-GARCH models, volatility, forecasting, neural networks, cloud
concept, forecast accuracy.
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1. Introduction

Over the past ten years academics of computer sci-
ence have developed new soft techniques based on
latest information technologies such as soft, neural
and granular computing to help predict future values
of high frequency financial data which are observa-
tions on financial variables taken daily or at a finer
time scale, and are often irregularly spaced over time
(see Ref.1). At the same time, the field of finan-
cial econometrics has undergone various new de-
velopments, especially in finance models, stochastic
volatility and software availability.

Volatility is an important factor in options trad-
ing. By volatility we mean the conditional standard
deviation of asset prices. Volatility has many finan-
cial applications. For example volatility modelling
provides a simple approach to calculating value at
risk of a financial position in risk management. It
also plays an important role in asset allocations un-
der the mean-variance framework.

This paper discusses and compares the forecasts
of volatility models which are derived from com-
peting statistical and Radial Basic Function (RBF)
neural network (NN) specifications. Our motivation
for this comparative study lies in both the difficulty
for constructing of appropriate statistical Autore-
gressive / Generalised Conditionally Heteroscedas-
tic (ARCH-GARCH) models (so called hard com-
puting) to forecast volatility even in ex post simu-
lations and the recently emerging problem-solving
methods that exploit tolerance for impression to
achieve low solution costs (soft computing).

Recently, most developed statistical (economet-
ric) models assume a nonlinear relationship among
variables, for example the exponential and power
GARCH models and exponential autoregressive
models. These are model-driven approaches based
on a specific type relation among the variables. On
the other hand, neural networks and other soft com-
puting techniques,are data driven models and non-
parametric models. Unlike in classical statistical in-
ference, the parameters are not predefined and their
number depends on the used training data. Param-
eters that define the capacity of model are data-
driven in such a way as to match the model ca-
pacity to the data complexity (see Ref. 2 for de-

tails). In this paper the relative forecasting and
approximation performance of nonlinear statisti-
cal models ARCH-GARCH, EGARCH (Exponen-
tial GARCH), PGARCH (Power GARCH) and an
ARMA (AutoRegressive Moving Average) model
respectively are compared with granular NN mod-
els.

The paper is organized as follows. In the Sec-
tion 2 we briefly describe the basic ARCH-GARCH
model and its variants: EGARCH, PGARCH mod-
els. In the Section 3 we present the data, con-
duct some preliminary analysis of the time series
and demonstrate the forecasting abilities of ARCH-
GARCH modes of an application. In the Section 4
we introduce the architectures of RBF (Radial Basic
Function) networks. The Section 5 includes an em-
pirical comparison. The Section 6 briefly concludes.

2. Some ARCH-GARCH Models for Financial
Data

ARCH-GARCH models are designed to capture cer-
tain characteristics that are commonly associated
with financial time series. They are among oth-
ers: fat tails, volatility clustering, persistence, mean-
reversion and leverage effect. As far as fat tails,
it is well know that the distribution of many high
frequency financial time series usually have fatter
tails than a normal distribution. A phenomenon of
fatter tails is also called excess kurtosis. In addi-
tion, financial time series usually exhibit a charac-
teristic known as volatility clustering in which large
changes tend to follow large changes, and small
changes tend to follow small changes. Volatility is
often persistent, or has a long memory if the current
level of volatility affects the future level for more
time periods ahead. Although financial time series
can exhibit excessive volatility from time to time,
volatility will eventually settle down to a long run
level. The leverage effect expresses the asymmet-
ric impact of positive and negative changes in finan-
cial time series. It means that the negative shocks in
price influence the volatility differently than the pos-
itive shocks at the same size. This effect appears as
a form of negative correlation between the changes
in prices and the changes in volatility.
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The first model that provides a systematic frame-
work for volatility modelling is the ARCH model
was proposed by Engle (see Ref. 3). Bollerslev
(see Ref. 4) proposed a useful extension of En-
gle‘s ARCH model known as the generalised ARCH
(GARCH) model for time sequence {y;} in the fol-
lowing form

)’z:Vt\/}Tt

m S
he=ao+Y ay;  + Y Bihi—; (1)
i=1 j=1

where {y, } is a sequence of IID (Independent Iden-
tical Distribution) random variables with zero mean
and unit variance. o; a f; are the ARCH and
GARCH parameters, h; represent the conditional
variance of time series conditional on all the infor-
mation to time ¢ — 1, the information set available at
time I;,_;. In the literature several variants of basic
GARCH model (1) has been derived. In the basic
GARCH model (1) if only squared residuals &_; en-
ter the equation, the signs of the residuals or shocks
have no effects on conditional volatility. However,
a stylized fact of financial volatility is that bad news
(negative shocks) tends to have a larger impact on
volatility than good news (positive shocks). Nel-
son (see Ref. 5) proposed the following exponential
GARCH model abbreviated as EGARCH to allow
for leverage effects in the form

Lo le—il+rE—i &
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Note if &_; is positive or there is “good news”,
the total effect of &_; is (1+ ¥) &—;. However con-
trary to the ”good news”, i.e. if &_; is negative
or there is ”bad news”, the total effect of &_; is
(I —7)|&—:|. Bad news can have a larger impact on
the volatility. Then the value of % would be expected
to be negative (see Ref. 1, p. 241).

The basic GARCH model can be extended to al-
low for leverage effects. This is performed by treat-
ing the basic GARCH model as a special case of
the power GARCH (PGARCH) model proposed by
Ding, Granger and Engle (see Ref. 6):

» q
ol =+ Z ;i (|&—i| + %'Etfi)d + Z ﬁf'o-fd—f' (3)
i=1 /=1
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where d is a positive exponent, and 7¥; denotes the
coefficient of leverage effects (see Ref. 1, p. 243).

Finally the ARMA(p,q) model, often called Box
Jenkins model is defined as follows:

14 q

i=ct+&+Y Oy i& i+, 0
i=1 i=1

“)

where ¢ is a constant, & are the error terms that
are generally assumed to be independent identically-
distributed random variables sampled from a normal
distribution with zero mean and constant variance &
~ N(0,62). ¢ and 0 are parameters of the AR an
MA parts (see Ref.7).

Another ARCH-GARCH models such as the
ARCH-GARCH regression or ARCH-GARCH in-
the-mean model can be found in Ref. &, p.155-
156.

3. An Application of ARCH-GARCH Models

We illustrate the ARCH-GARCH methodology by
developing a forecasting models. The data is taken
from the commercial VUB bank of the Slovak Re-
public and are available at http://www.vubam.
sk/Default.aspx?CatID=40&fundId=4. The
data is also listed at http://fria.fri.uniza.
sk/files/data_VUB. The data consist of daily ob-
servations for the price time series of the bond fund
of VUB (BPSVUB). The data was collected for the
period May 7, 2004 to February 28, 2008 which
provided of 954 observations (see Figure 1 and 4).
To build a forecasting model, the sample period for
analysis ry, ..., rgpp was defined (denoted as training
data set), i.e. the period over which the forecast-
ing model was developed and the ex post forecast
period (validation data set denoted ) rog1, ..., 7954 as
the time period from the first observation after the
end of the sample period to the most recent obser-
vation. By using only the actual and forecast values
within the ex post forecasting period only, the accu-
racy of the model can be calculated.

Input selection is crucial importance to the suc-
cessful development of an ARCH-GARCH model.
Potential inputs were chosen based on traditional
statistical analysis: these included the raw BPSVUB
and lags thereof.  The relevant lag structure

Published by Atlantis Press
Copyright: the authors

355


http://www.vubam.sk/Default.aspx?CatID =40&fundId=4
http://www.vubam.sk/Default.aspx?CatID =40&fundId=4
http://fria.fri.uniza.sk/files/data_VUB
http://fria.fri.uniza.sk/files/data_VUB

D. Marcek et al.

of potential inputs was analysed using traditional
statistical tools, i.e. using the autocorrelation
function (ACF), partial autocorrelation function
(PACF) and the Akaike/Bayesian information cri-
terion (AIC/BIC)(see Ref. 8): we looked to deter-
mine the maximum lag for which the PACF coeffi-
cient was statistically significant and the lag given
the minimum AIC. According to these criterions the
ARMA(5,0) model was specified as

re=8+ 01+ Gar 2+ P31 3+ Qarr 4+ P15+ &

&)
where &,¢1,0,,...,¢s are unknown parameters of
the model, & is independent random variable drawn
from stable probability distribution with mean zero
and variance o7.

As we mentioned early, high frequency finan-
cial data, like our BPSVUB, reflect a stylized fact of
changing variance over time. An appropriate model
that would account for conditional heteroscedastic-
ity should be able to remove possible nonlinear pat-
tern in the data. Various procedures are available
to test an existence of ARCH or GARCH. A com-
monly used test is the LM (Lagrange Multiplier)
test. The LM test assumes the null hypothesis H :
o = 0 = ... = 0o, = 0 that there is no ARCH. The
LM statistics has an asymptotic 2 distribution with
p degrees of freedom under the null hypothesis. For
calculating the LM statistics see for example Ref. 3
Egs. (27) and (28). The LM test performed on the
BPSVUB indicates presence of autoregressive con-
ditional heteroscedasticity. For estimation the pa-
rameters of an ARCH or GARCH model the maxi-
mum likelihood procedure was used. The quantifi-
cation of the model was performed by means of the
R 2.6.0 software athttp://cran.r-project.org
has resulted into the following mean equation:

ry = 0.0000748 + 0.06628r;_1 + 0.09557r,_o+

+0.0528r;3 +0.05287;_4 +0.09795r,_5 +-¢;

and variance equation

h, = 1.9581078 +0.1887¢> | +0.8075h,_1 (6)

where ¢; are estimated residuals of & from Eq. (5).

Finally, to test for nonlinear patterns in price
bond time series, the fitted standardized residuals
& = ¢ / vh were examined by the BDS test.The

BDS test (at dimensions N = 2, 3, and tolerance
distances € = 0.5, 1.0, 1.5, 2.0) finds no evi-
dence of nonlinearity in standardized residuals of the
BPSVUB. The BDS statistic is based on the null hy-
pothesis that data in a time series is independently
and identically distributed (idd) against an unspeci-
fied alternative (see Ref. 9).The BDS statistic is de-
fined as

BDS,(€) = (N—m+1)*[Cun(e) — (Crn(e))"]

)
where C,, n(€) is a value of correlation integral or a
number of clustered pairs lying within a particular
tolerance distance € at a spatial dimension m. The
correlation integral Cy, v (€)is given by

N N
Cun(€) =Y, Y Iex| x0)[2/Nu(Niw = 1)]

t=18=r—1

where x}" = x1,x2,...,X4m—1 1s m-dimensional vec-
tor of a scalar time series {x;} of length N and
where Tex", X = ||x" — X7|| = sup | x—1 — x541| <
€. Thus the correlation integral measures frac-
tion of pairs that lie within the tolerance distance
€ for particular spatial dimension m. For more
details see Ref. 8. The fitted vs. actual val-
ues are graphically displayed by means of the
Eviews software (http://www.eviews.com) in
Figure 1. The volatility was estimated by means of
the R 2.6.0 software and is displayed in Figure 2.

ARMA{5,0)+ GARCH(1.1)

132
F1.30
r1.28
r1.26
r1.24
I 122

F1.20

-015

T T T T T T T T
100 200 300 400 500 GO0 700 600 200

— —Residual Actual ———Fitted

Fig. 1. Actual and fitted values of the VUB fund:
ARMA(5,0)+GARCH(1,1) - model (6). Residuals are at
the bottom. Actual time series represents the solid line, the
fitted vales represents the dotted line.
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Finally, for catching the leverage effect, the
ARMA(5,0)+EGARCH(1,1) model was estimated.
The coefficient for leverage effect y from equation
(2) is statistical significant and equals -0.2099535,
and it is negative which means that “bad news”
have larger impact to volatility. If we compar-
ing the estimated volatility in Figure 2 with the
VUB fund in Figure 1, we can see that in period
of depression the “leverage effects” and the bad
news cause the asymmetric jump in the volatility.
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Fig. 2. The estimated volatility for ARMA(5,0) +
GARCH(1,1) process - model (6).

In many cases, the basic GARCH model with
normal Gaussian error distribution (1) provides a
reasonably good model for analyzing financial time
series and estimating conditional volatility. How-
ever, there are some aspects of the model which
can be improved so that it can better capture the
characteristics and dynamics of a particular time se-
ries. For this purpose the Quantile-Quantile (QQ)
plots are used. For example, the R system (http:
//cran.r-project.org/) assist in performing
residual analysis (computes the Gaussian, studen-
tised and generalized residuals with generalized er-
ror distribution - GED). In Figure 3(a) the QQ-plot
reveals that the normality assumption of the resid-
uals may not be appropriate. According to Figures
3 a comparison of QQ-plots shows that GED distri-
bution promise better goodness of fit. This is con-

High Frequency Data Modelling

firmed by AIC and BIC criterions and Likelihood
function displayed in Table 1. The GED error dis-
tribution provides the best fit because AIC and BIC
criterions are the smallest.

Table 1. AIC, BIC and likelihood function for various types
error distribution (model (6)).

Model model.n model.t model.
(Gaussian) (studentised) GED
AIC criterion -10576 -10778 -10792
BIC criterion -10533 -10730 -10744
Likelihood funct. 5297 5399 5406
QQ-Plot of Standardized Residuals
3pr
(5]
© & ©
4 =
PRt
s0°F
-3 -2 & 1] 1 2 3

Quantiles of gaussian distribution

(a)

Fig. 3. QQ-plot of Gaussian standard residuals (a), studen-
tised residuals (b) and generalised (GED) residuals (c).

QQ-Plot of Standardized Residuals

Standardized Residuals

oo

-1% -10 -5 0 o 10 15

Quantiles of t distribution

(b)
Fig. 3. (Continued).
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QQ-Plot of Standardized Residuals

Standardized Resicuals

-~

-3 -2 -1 0 1 2 3

Quantiles of normal distribution
(©)
Fig. 3. (Continued).

As we mentioned above, the estimation of
EGARCH and PGARCH models has showed the
presence of leverage effects. The assumption of nor-
mal error distribution is also violated because the al-
ternative error distributions provide better goodness
of their fit. These findings indicate the chance of
gaining better results in forecasting with using some
of these models. Our suspicion was confirmed by
computing the statistical summary measure of the
model‘s forecast RMSE (Root Mean Square Error).

As we can see in Table 2 the smallest errors have

just the GARCH with GED distribution.

After these findings we can make pre-
dictions for next 54 trading days using the
model with the smallest RMSE, i.e. by the
ARMA(5,0) + GARCH(1,1) model with GED
error distribution. These predictions are calcu-
lated by means of the Eviews software (http:
//www.eviews.com) and shoved in Figure 4.

ARMA(5,0)+GARCH(1,1) with GED distribution

1.332
1.3284
1.3244
1.3204

1.3164

T T T
920 930 240

—SERIES — SERIES_F

Fig. 4. Actual (solid) and forecast (dotted) values of the
VUB fund.

Table 2. Ex post forecast RMSEs for various extensions of

GARCH models.
Model AR(5)+ AR(5)+ AR(5)
Distribution GARCH(1,1) EGARCH(1,1) PGARCH(1,1)
Gaussian 0.003461 0.001066 0.001064
t-distribution 0.002345 0.001064 0.001063
GED-distribution 0.001056 0.001063 0.001062

4. An Alternative Approach

Over the past few years, new information tech-
nologies based on the fact that financial time se-
ries contain nonlinearities have been developed
which document competitive performance of NN
on a larger number of time series (see Ref.
10,11). In this section we show a new ap-
proach of function estimation for time series mod-

elled by means a granular RBF neural network
based on Gaussian activation function modelled
by cloud concept (see Ref. 12). We pro-
posed the neural architecture according to Figure 5.
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Fig. 5. RBF neural network architecture.

The structure of a neural network is defined by
its architecture (processing units and their intercon-
nections, activation functions, methods of learning
and so on). In Figure 5 each circle or node repre-
sents the neuron. This neural network consists of an
input layer with input vector x and an output layer
with the output value y;. The layer between the input
and output layers is normally referred to as the hid-
den layer and its neurons as RBF neurons. Here, the
input layer is not treated as a layer of neural process-
ing units. One important feature of RBF networks is
the way how output signals are calculated in com-
putational neurons. The output signals of the hidden
layer are

0j =2 ([lx—w]) ®)

where x is a k-dimensional neural input vec-
tor, w; represents the hidden layer weights, y»
are radial basis (Gaussian) activation functions.
Note that for an RBF network, the hidden layer
weights w; represent the centres c; of activa-
tion functions in the hidden layer. To find the
weights w; or centres of activation functions we
used the following adaptive (learning) version
of K-means clustering algorithm for s clusters:

High Frequency Data Modelling

Step 1. Randomly initialise the centres of RBF
neurons c(,-t), j=1,2,,s where s represents the

number of chosen RBF neurons (clusters).

Step 2. Apply the new training vector

x0) = (x1,%2, ., Xk)

Step 3. Find the nearest centre to x® and replace
its position as follows
+1

cgt ) = cy) +A (1) (x(’) - c&”)
where A () is the learning coefficient selected as
linearly decreasing function of 7 by A (1) = Ao (¢)
(1—1/N) where Aq(t) is the initial value, ¢ is
the present learning cycle and N is number of
learning cycles.

Step 4. After chosen epochs number, termi-
nate learning. Otherwise go to step 2.

The second parameter of the RBF function, the
standard deviation, is estimated as K, (K > 1) mul-
tiple of the mean value of quadratic distance among
the the input vectors and their cluster centres. The
value of K is regarded as the rate of overlapping in
the distribution of input data (see Ref. 13). The
above learning method based on the clustering al-
gorithm is regarded as one of the granular method
presenting the bottom-up granulation (see Ref. 14).
Input vectors are combined into larger overlaping
granules (clusters) described by clusters centres and
the standard deviations.

The output layer neuron is linear and has a scalar
output given by

A
V=) vioj ©)
j=1
where v; are the trainable weights connecting the
component of the output vector 0. Then, the output
of the hidden layer neurons are the radial basic func-
tions of the proximity of weights and input values.
A serious problem is how to determine the number
of hidden layer (RBF) neurons. The most used se-
lection method is to preprocess training (input) data
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by some clustering algorithm. After choosing the
cluster centres, the shape parameters ¢; must be de-
termined. These parameters express an overlapping
measure of basis functions. For Gaussians, the stan-
dard deviations o; can be selected, i.e. o0j~Ac; ,
where Ac; denotes the average distance among the
centres.

The RBF network computes the output data set
as

s s
i =G (x;,¢,v) = Z Vi (Xg,c)) = Z VjOjt
j=1 Jj=1

t=1,2,....N (10)

where N is the size of data samples, s denotes
the number of the hidden layer neurons. The hid-
den layer neurons receive the Euclidian distances
(Hx —cj) H and compute the scalar values o, of the
Gaussian function y» (x;,¢;) that form the hidden
layer output vector o;. Finally, the single linear out-
put layer neuron computes the weighted sum of the
Gaussian functions that form the output value of y;.
If the scalar output values 0, from the hidden
layer will be normalised, where the normalisation
means that the sum of the outputs from the hidden
layer is equal to 1, then the RBF network will com-
pute the “normalised” output data set y, as follows

~ - Ojt
Y1 =G (x,¢,v) 2:\qt - =
j=10j1
i Jt IVZ xl‘vcj)
=1 m1 2 (x,c))

t=12,....,N (11

The network with one hidden layer and normalised
output values o, is the fuzzy logic model or the soft
RBF network.

Basically, there are two learning schemes to
adapt the weights of v;,. The first one uses the linear
estimation function of the column weight vector v as
an optimal solution in a least squares sense. In vec-
tor notation this estimation function for output layer
weights is

— (0"0) "0y (12)
where v{ = (vis,V2s,...,Vss), Oisan (N x 5) matrix

and y is the (N x T) vector. The matrix (OTO) is of

the dimension (s x s) easily inverted for very large
number of data samples.

The second learning scheme uses the first-order
gradient procedure. In our case, the subjects of
learning are the weights v;, only. These weights can
be adapted by the error back-propagation algorithm.
In this case, the weight update is particularly simple.
If the estimated output for the single output neuron
is ¥y, and the correct output should be y,, then the
error ¢, is given by ¢, = y; —y; and the learning rule
has the form

j=1,2,....s
t=1,2,....N

V.j>t — vjvt +n0jvtet’

(13)

where the term, 1 € (0,1) is a constant called the
learning rate parameter, o;, is the normalised output
signal from the hidden layer. Typically, the updating
process is divided into epochs. Each epoch involves
updating all the weights for all the examples.

Next, to improve the abstraction ability of soft
RBF neural networks with architecture depicted in
Figure 5, we replaced the standard Gaussian acti-
vation (membership) function of RBF neurons with
functions based on the normal cloud concept (see
Ref. 12, p. 113, Ref. 15, p.212).

Definition. Let U be the universe of discourse. A
is a qualitative concept valued on U. The certainty
degree Ny (x) of a random sample x of A in U to the
concept A is a random number with a stable ten-
dency. Then the distribution of x on U is called a
cloud model and x is called a cloud drop.

Cloud models are described by three numeri-
cal characteristics: expectation (Ex) as most typi-
cal sample which represents a qualitative concept,
entropy (En) as the uncertainty measurement of the
qualitative concept and hyper entropy (He) which
represents the uncertain degree of entropy. En and
He represent the granularity of the concept, because
both the En and He not only represent fuzziness of
the concept, but also randomness and their relations.
Then, in the case of soft RBF network, the Gaus-
sian membership function y; (./.) in Eq. (11) has
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the form
Vo (xi,¢j) = exp [~ (5 — E (1)) /2 (En)*| =
—exp |~ (v~ ) /2 (En')’| (14)

where En’ is a normally distributed random number
with mean En and standard deviation He, E is the
expectation operator.

5. Empirical Comparison

The RBF NN was trained by using of the variables
and data sets as each ARCH-GARCH model above.
The network has been developed at the Faculty of
Management Science and Informatics, University of
Zilina. The architecture of the network consists of
5 neurons in input layer, 1, 5 or 10 RBF neurons in
hidden layer and 1 neuron in output layer. In the
granular RBF neural network framework, the non-
linear forecasting function f (x) was estimated ac-
cording to the expressions (11) with RBF function
v (./.) given by Eq. (14). Granular RBF NN as-
sumes that the noise level of the entropy is known.
Noise levels are indicated by hyper entropy. It is as-
sumed that the noise level is constant over the time.
We select, for practical reasons, that the noise level
is a multiple, say 0.015, of entropy. The forecast-
ing ability of particular networks was measured by
the MSE (Mean Square Error) criterion of ex post
forecast periods (validation data set). The detailed
computational algorithm for the forecast MSE val-
ues and the weight update rule for the granular net-
work is shown in Appendix A. The results of this ap-
plication for various architectures of granular RBF
networks are shown in Table 3.

Table 3. Ex post forecast RMSE:s for various granular RBF NN
(see text for details).

Number of RBF neurons K RMSE
| 1.25 0.00719

4.0 0.00716

5 1.25 0.00756

4.0 0.00758

10 1.25 0.00720

4.0 0.00715

A direct comparison between statistical (ARCH-
GARCH) and neural network models shows that

High Frequency Data Modelling

the statistical approach is better than the neural net-
work competitor(see the last row of Table 2 and first
row of Table 3). The achieved ex post accuracy of
RBF NN (RMSE = 0.00719), but is still reason-
able and acceptable for use in forecasting systems
that routinely predict values of variables important
in managerial decision processes. Moreover, as we
could see, the RBF NN has such attributes as com-
putational efficiency, simplicity, and ease adjusting
to changes in the process being forecast. ARCH-
GARCH models require more costs of development,
installation and operation in a management system,
management comprehension and cooperetion, and
often a lot of computational time.

In Ref. 16, the approximation ability of sales
time series {y;}/%] (the 724 daily sales for Hansa
Flex company, 2004 - 2005) was analysed by vari-
ous types (classic, soft, granular) of RBF NNs. The
statistical specification of the model resulted into the
following two equations:

Vi=01y7+& (15)

or
(16)

In the classic RBF NN framework the non-linear
function f(x) was estimated according to the ex-
pressions (8) and (9). In the case of fuzzy logic
RBF NN, the non-linear input - output approxima-
tion function was estimated according to the ex-
pression (11). The approximation results measured
by MSE were calculated analogously as in the case
of ARCH-GARCH model. Their values of various
RBF's networks related to the different number of
clusters are shown in Table 4. The detailed com-
putational algorithm for calculating the MSE val-
ues for approximation is shown in Refs. 15 and 16.
Comparing both approaches, i.e. models based on
the statistical methodology (the MSE for model ex-
pressed by Eq. (15) is 0.779 and by Eq. (16) is
0.7466 respectively), and models based on RBF net-
work approaches we see, that models based on RBF
networks, are better approximation models, because
the estimated values are close to the actual values.
As shown in Table 4, models that generate the best”
MSE's, are soft RBF networks.

Vi —Yi—71=601&_7+&
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Table 4. Approximation results of various RBF‘s networks re-
lated to the different number of clusters (RBF neurons).

Neural network  Gaussian (classic) Gaussian with Gaussian soft RBF (with

architecture: RBF network normalised outputs  normal cloud concept -
(soft RBF network)  granular network)
Number of RBF
neurons MSE
RBF network representations for model (15): y; = 61y,—7+ &
3 1.439 0.698 0.729
5 0.729 0.693 0.716
10 0.687 0.675 0.678
15 0.697 0.681 0.678
RBF network representations for model (16): y; —y,—7 = 01&_7+ &
3 0.783 0.646 0.647
5 0.810 0.632 0.630
10 0.607 0.571 0.571
15 0.582 0.563 0.563

6. Conclusion

This paper has presented the granular RBF neural
network based on Gaussian activation function mod-
elled by cloud concept for solving approximation
and prediction problems of real financial and eco-
nomic processes. The neural network is suggested
as an alternative to widely used statistical and econo-
metric techniques in time series modelling and fore-
casting. The power of the granular RBF NN is tested
against some nonlinear high frequency data. A com-
parative analysis of two empirical studies is exe-
cuted in order to evaluate its performance. The pre-
sented neural network, or soft computing approach,
is applied on real data and time series with different
models. It is able by using input-output data to find
a relevant functional structure between the input and
the output.

The importance of having good intelligent fore-
casting tools for time series is ever more important
with increasing number of data when more effort
must be devoted to development of efficient data

handling and management procedures. The pro-
posed methodology is believed to be helpful in fu-
ture research and its applications.
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Appendix A The algorithm for updating weights in the granular RBF network and for calculating sta-
tistical forecast summary measures (MSE).

function WEIGHT_UPDATE _and MSE(granular_RBF network, examples, 1, s, c;, 6j, He;)
returns a network with the MSE value
inputs: granular RBF _network , MSE a Gaussian soft RBF network
with normal cloud concept
N4 number of training data set
Ng number of validation data set
examplesA, a set of N4 input/output observed data pairs: x, y (training data set)
examplesB, a set of Np input/output observed data pairs: x, y (validation data set)
7, the learning rate
s, the number of clusters (RBF neurons)
cj, the centre of the j-th cluster, j =1, 2, ..., s
0;, the standard deviation j-th cluster, j =1, 2, ..., s
Hej, the hyper entropy
- Initialize weights: v;,j =1, 2, ..., s leading to the output neuron.
- Initialize the learning rate: 7).
- Initialize the input values: s,c;, 0, He; (see text for details)
repeat
MSE + 0
for each example x in examplesA do
/* Generate normally distributed random numbers H e’j
with the means ¢; and standard deviations He; */
H e’j < RUN-NORMAL-RANDOM-GENERATOR(c;,He;), j =1,2,...,s
/* Calculate the outputs from the RBF neurons */
0j Y (x,cj), j=12,....s

/* where y, is the Gaussian function: Y, = exp (— (x —cj/H e;-)) */

/* Calculate the normalized outputs ogN) */

0§.N) <_0j/2§':10j,j: 1,2,...,s

/* Calculate the output y from the output neuron */

~ N
Y Yo VjOE' )

/* Calculate the output layer neuron’s error e */

e« y—y
/* Update the output layer weight v; */
Vi vj—l—OEN)e, j=12,...,s

end

/* Calculate the mean square error */
for each example x,y in examplesB do
MSE = MSE + [y — viYioexp(—(x—cj)* 2Hej)]2
end
MSE = MSE/Ng
until MSE reaches minimum
return MSE, network
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