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Abstract 

We outline eight characteristics of the environments, tasks, 
and agents important for human-level intelligence. Treating 
these characteristics as influences on desired agent 
behavior, we then derive twelve requirements for general 
cognitive architectures. Cognitive-architecture designs that 
meet the requirements should support human-level behavior 
across a wide range of tasks, embedded in environment 
similar to the real world. Although requirements introduced 
here are hypothesized as necessary ones for human-level 
intelligence, our assumption is the list is not yet sufficient to 
guarantee the achievement of human-level intelligence 
when met. However, attempts to be explicit about 
influences and specific requirements may be more 
productive than direct comparison of architectural designs 
and features for communication and interaction about 
cognitive architectures.  

Introduction 

This paper explores requirements on cognitive 
architectures for artificial general intelligence. The goal of 
the analysis is to determine the requirements for cognitive 
architectures that support the full-range of human-level 
intelligent behavior. Although many different architectures 
have been proposed (and some built), understanding the 
relative strengths and weaknesses of these architectures 
and their unique contributions to the pursuit of human-
level intelligence has proven elusive, whether via analytic 
comparison (e.g., Anderson & Lebiere, 2003; Jones and 
Wray, 2006) or empirical comparisons on task 
performance (e.g., Gluck & Pew. 2005).  

However, as suggested by Cohen (1995), three influences 
determine an agent’s behavior: the agent’s structure, its 
environment, and tasks.

1
 Given the diversity of 

environments and tasks, we are not attempting to create 
architectures that are necessarily the best or even sufficient 
for all possible environments and all possible tasks. We 
assume that agents exist in an environment and pursue 
tasks similar to those we find in the world we inhabit. The 
challenge is to take advantage of the structure of the 
environment and tasks in our architecture design, while 
avoiding optimizations that apply to only a subset of tasks. 
For specific problems, specialized architectures can be 
more appropriate (e.g., Deep Blue for chess, Campbell, 
Hoane & Hsu 2002). 

                                                           

1
 We use “task” for any type of problem, goal, drive, or reward that 

provides direction for agent behavior. 

Figure 1 illustrates how the characteristics of the 
environment, tasks, and agent structure determine a set of 
requirements for a cognitive architecture. These 
requirements in turn are the basis for a specific architecture 
design. Cognitive architectures must provide a 
comprehensive computational story that puts all the pieces 
of intelligence together from end to end. 

Figure 1: Influences on architecture design. 

In practice, researchers have typically focused on 
communicating the architectural design of their systems 
and its performance on specific tasks rather than 
motivating the design via specific requirements. We 
propose to orient future discussion around requirements 
rather than specific designs. There will be two immediate 
benefits to this approach. First, it makes little sense to 
compare architectures (as works in progress) when they 
share few requirements. If one architecture attempts to 
satisfy a requirement that all decisions must be made in 
bounded time, whereas another is developed independent 
of that requirement, we would expect to see very different 
approaches that would be difficult, if not meaningless to 
compare. Being explicit about requirements will make it 
easier to see what “spaces” architectures are attempting to 
occupy – what environments and problems they are 
appropriate for. Secondly, because human-level 
intelligence is so broad, there is no existing list of 
necessary and sufficient requirements of AGI. This paper, 
drawing from our experience, proposes an initial list of 
these requirements. We expect it to be refined, extended, 
and corrected via interaction with other researchers.  

We recognize this attempt is not novel. John Anderson 
took a step in this direction with the design of specific 
components of ACT-R using a rational analysis (Anderson, 
1990). He determined optimal methods for primitive 
architectural functions, such as retrieving an item from 
declarative memory given the expected use of that memory 
in the future. This revolutionized his design process and 
led to significant advances in ACT, including the 
development of a new process for retrieving items from 
long-term declarative memory. Although rational analysis 
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is useful for designing the performance of specific 
components, it is difficult to apply to the specification of a 
complete cognitive architecture as it does not specify what 
components there should be, or how they combine together 
to provide general intelligent behavior.  

The analysis also builds on previous descriptions of 
evaluation criteria for cognitive architectures (Langley, 
Laird & Rogers, 2009; Laird et al. 2009; Laird et al., 1996; 
Laird, 1991) and theories of cognition (Anderson & 
Lebiere, 2003; Newell, 1990). For example, previously 
identified criteria include a mixture of constraints on 
behavior (flexible behavior, real-time performance) 
architecture (support vast knowledge bases), and 
underlying technology (brain realization) (Newell, 1990, 
Anderson & Lebiere, 2003). We separate characteristics of 
the environment, tasks, agent structure, and the behavior of 
an agent, which are described below, and then use them to 
derive requirements for cognitive architectures.  

Environment, Task, and Agent Characteristics 

In this section, we list characteristics of environments, 
tasks, and agents that lead to requirements for architectures 
that support human-level intelligent agents. Some of these 
characteristics are obvious, or so ingrained in the literature 
that they are rarely made explicit, such as the existence of 
regularities at different time scales in the environment. 
Some of these are characteristics of one of the three 
components, independent of the others, but many of them 
are characteristics of interactions between two or even all 
three. The interactions are important because the 
characteristics of an environment are only important to the 
extent they influence the agent’s ability to pursue its tasks.  

C1. ENVIRONMENT IS COMPLEX WITH DIVERSE 

INTERACTING OBJECTS 
The world is large and complex. Agents can usefully 
interpret the environment as if it consists of independent 
objects (together with materials that do not have object-like 
structure, such as air, water, and sand). There are many 
objects and the objects interact with each other (i.e., via 
physics). Objects have numerous diverse properties.  

C2. ENVIRONMENT IS DYNAMIC 
The agent’s environment can change independently of the 
agent so that the agent does not determine the state of the 
environment and the agent must respond to the dynamics 
of the world. Because the world can change while an agent 
is reasoning, an agent must be able to respond quickly 
relative to the dynamics of the environment. Moreover, the 
dynamics of the environment are so complex that an agent 
cannot always accurately predict future states in detail.  

C3. TASK-RELEVANT REGULARITIES EXIST AT 

MULTIPLE TIME SCALES 
An environment, while it may be complex and dynamic, it 
is not arbitrary. The environment is governed by laws of 
interaction that are constant, often predictable, and lead to 

recurrence and regularity that impact the agent’s ability to 
achieve goals. Regularities exist at a variety of time scales. 

C4. OTHER AGENTS IMPACT TASK PERFORMANCE 
The agent is not alone, and must interact with other agents 
in pursuit of its goals. Other agents may help or hinder the 
agent’s achievement of its tasks. The agent can 
communicate with the other agents to share knowledge, 
indicate intent, etc. In addition, some agents have similar 
structure and capabilities to the agent (similar perception, 
action, and mental capabilities), making it possible to learn 
from other agents by observing the methods they use for 
solving problems. This characteristic is a special case of 
C1, C2, and C3, but has sufficient impact on the structure 
of agents to warrant distinct enumeration. 

C5. TASKS CAN BE COMPLEX, DIVERSE, AND NOVEL 
A general, intelligent agent must be able to work on a 
diverse set of novel, complex tasks. Tasks can interact so 
that in some cases, achieving one task aids in achieving 
another, while in other cases, achieving one makes it more 
difficult to achieve another. Tasks can also vary in the time 
scales required to achieve them, where the agent must 
achieve some tasks at close to the timescale of relevant 
changes in the environment, while others tasks can require 
extended behavior over time.  

C6. AGENT/ENVIRONMENT/TASK INTERACTIONS ARE 

COMPLEX AND LIMITED 
There may be many regularities in the environment, but 
they are only relevant if they can be detected and influence 
the agent’s ability to perform its tasks. Thus, an agent has 
sufficient sensory capabilities that it can detect (possibly 
only through extensive learning) task-relevant regularities 
in the environment. An agent also has many mechanisms 
for acting in the environment in order to pursue a task. 
Although sensing and action modalities can be extensive, 
they are limited. The environment is partially observable, 
both from inherent physical limits in the sensors and the 
size of the environment. Sensors have noise and can be 
occluded by objects, have limited range, etc. making the 
agent’s perception of its environment incomplete and 
uncertain. The agent’s actions must obey the physical 
limitations of the environment. For example, actions 
usually take time to execute and have limited extent.  

C7. AGENT COMPUTATIONAL RESOURCES ARE LIMITED 
The agent has physical limits on its computational 
resources relative to the dynamics of the environment. The 
agent is unable to perform arbitrary computation in the 
time it has available to respond to the environment. Thus, 
an agent has bounded rationality (Simon, 1969) and cannot 
achieve perfect rationality (or universal intelligence, Legg 
& Hutter, 2007) in sufficiently complex environments and 
tasks when it has large bodies of knowledge.  

C8. AGENT EXISTENCE IS LONG-TERM AND CONTINUAL 
The agent is always present in its environment and it needs 
to actively pursue core tasks (such as self-protection) 
related to its survival. The agent may act to position itself 
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so that the dynamics of the environment have little impact 
on it for extended times (e.g., hide in a protected area), but 
it has no guarantee that those efforts will be successful. 
Further, the agent has a long-term existence relative to its 
primitive interactions with its environment. Its activity 
extends indefinitely across multiple tasks, and possibly 
multiple instances of the same task.  

Architectural Requirements 

Based on the characteristics of environments, tasks, and 
agents presented in the previous section, we derive the 
following requirements for cognitive architectures related 
to knowledge acquisition, representation, and use. Our goal 
is to generate a list that is necessary, such that all human-
level agents must meet these requirements and that it is 
sufficient, such that meeting these requirement guarantees 
human-level behavior. The requirements we derive do not 
include criteria related to how well they model human 
behavior, nor the ease with which humans can create, 
debug, maintain, or extend agents developed in cognitive 
architectures. We also have not included criteria related to 
properties of the theory underlying the architecture, such as 
parsimony (Cassimatis, Bello, & Langley, 2008). 

R0. FIXED STRUCTURE FOR ALL TASKS 

An individual agent adapts to its environment not through 

changes in its architecture but through changes in 

knowledge. Architectures should not depend on parameters 

that are tuned to improve performance on a new task; 

although parameters can be useful for introducing variation 

across agents. Architectures also should not allow escape 

to a programming language for task-specific extensions. 

The rationale for this requirement is that environmental 

regularities exist [C3] at time scales that approach or 

exceed the life of the agent [C8] that are worth capturing in 

a fixed architecture.  

R1. REALIZE A SYMBOL SYSTEM  
The consensus in AI and cognitive science is that in order 
to achieve human-level behavior, a system must support 
universal computation. Newell (1990) makes the case that 
symbol systems provide both sufficient and necessary 
means for achieving universal computation; that is, a 
symbol system is capable of producing a response for 
every computable function. Possibly most important, 
symbol systems provide flexibility. In particular, they 
provide the ability to manipulate a description of some 
object in the world “in the head” without having to 
manipulate the object in the real world. Symbol structures 
also provide arbitrary composability to match the 
combinatoric complexity and regularity of the environment 
[C1, C3]. Thus, structures encountered independently can 
be combined later to create novel structures never 
experienced together [C5]. This generative capability is 
what we do when we combine letters or sounds to make 
new words, and when we combine words to make new 
sentences, and so on. Symbol systems also allow us to 
accept instructions from another agent and then use those 

instructions later to influence behavior (interpretation) – 
providing additional flexibility and more generality – so 
that not everything must be programmed into a symbol 
system beforehand. In addition, symbols are required for 
communication that does not cause the meaning to be 
directly experienced by the agent [C4]. For example, 
striking someone directly causes an experience in another 
agent, while a verbal threat involves the transmission of 
symbols that require interpretation.  

Requiring that the agent realize a symbol system does not 
imply that symbolic processing must be implemented 
directly via some symbolic knowledge representation. 
Neural and connectionist models can obviously support 
human-level behavior. Rather, this requirement posits that 
such approaches must implement symbol systems to some 
degree (Barsalou, 2005).  

R2. REPRESENT AND EFFECTIVELY USE MODALITY-

SPECIFIC KNOWLEDGE 
Although pure symbol systems support universal 
computation, they rely on modality-independent methods 
for representing and reasoning to achieve universality and 
complete composability. However, complete composability 
is not always necessary. Modality-specific representations 
can support more efficient processing through regularities 
[C3] in sensory processing [C6]. For example, some 
representations and associated processes for visual input 
have qualitatively different computational properties for 
image operations. Examples include rotation and inversion, 
and detecting and reasoning about spatial relations. For 
some tasks [C5] given limited computational resources 
[C7], modality-specific representations are necessary for 
achieving maximal efficiency, especially in tasks that 
require real-time performance [C2].  

R3. REPRESENT AND EFFECTIVELY USE LARGE BODIES 

OF DIVERSE KNOWLEDGE 
The agent must be able to represent and use large bodies of 
knowledge. This wealth of knowledge that arises from the 
complexity of the environment [C1] and its associated 
regularities [C3], the variety of tasks the agent must pursue 
[C5], its complex interaction with the environment [C6], 
and the agent’s continual existence [C8]. This knowledge 
is diverse, including memories of experiences, facts and 
beliefs, skills, and knowledge about other agents [C4].  

R4. REPRESENT AND EFFECTIVELY USE KNOWLEDGE 

WITH DIFFERENT LEVELS OF GENERALITY 
The agent must represent and use general knowledge that 
takes advantage of the environmental regularities [C3]. The 
agent must also be sensitive to details of its current 
situation and its relationship to its tasks. These details are 
ubiquitous in complex [C1], dynamic [C2] environments 
where the agent can have many tasks [C5].  

R5. REPRESENT AND EFFECTIVELY USE DIVERSE 

LEVELS OF KNOWLEDGE 
An agent must be able to take advantage of whatever 
knowledge is available. For novel tasks and environments, 
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its knowledge is limited, and even for familiar tasks and 
environments, its knowledge may be incomplete, 
inconsistent, or incorrect. If there is extensive knowledge 
available for a task, the agent must be able to represent and 
effectively use it. There are regularities in the environment 
worth knowing [C3], the complexity of an agent’s limited 
sensing of its environment [C6], the complexity of its 
environment and tasks [C5], and limits on its 
computational resources [C7]. Planning systems often fail 
on this requirement. They often have a required and fixed 
set of input knowledge (the task operators and a declarative 
description of the goal). Without this knowledge, they are 
unable to attempt the problem. Further, if additional 
knowledge is available (such as knowledge about the 
likelihood of an operator leading to the goal), the planner is 
often unable to use it to improve behavior.  

R6. REPRESENT AND EFFECTIVELY USE BELIEFS 

INDEPENDENT OF CURRENT PERCEPTION 
The agent must be able to represent and reason about 
situations and beliefs that differ from current perception. 
Perceptual information is insufficient because perception is 
limited [C6], the environment is dynamic [C2], and there 
are regularities in the environment worth remembering 
[C3] for task completion [C5]. Thus, the agent must be 
able to maintain history of prior situations as well as the 
ability to represent and reason about hypothetical 
situations, a necessary component of planning. An agent 
that satisfies this requirement can make decisions based not 
just on its current situation, but also on its memory of 
previous situations and its prediction of future situations.  

R7. REPRESENT AND EFFECTIVELY USE RICH, 

HIERARCHICAL CONTROL KNOWLEDGE  
The agent must have a rich representation for control, 
because the actions it can perform are complex [C6]. 
Because of the dynamics of the environment [C2], and the 
multiplicity of the tasks playing out at multiple time scales 
[C5], some actions may need to occur in rapid sequence 
while others may need to execute in parallel. To keep up 
with a rapidly changing environment [C2] with limited 
computational resources [C7], the agent must take 
advantage of the structure of regularities of the 
environment [C3], maximizing the generality of the 
knowledge it encodes because of the complexity and 
variability of the environment and the agent's tasks [C1, 
C5]. This often means organizing knowledge about actions 
hierarchically. The agent can then decompose some of its 
actions into sequences of simpler actions, using the context 
of higher-level actions to constrain choices and reduce the 
knowledge required to generate action. 

R8. REPRESENT AND EFFECTIVELY USE META-

COGNITIVE KNOWLEDGE 
In addition to the different types of knowledge discussed 
above, it is sometime necessary for an agent represent and 
use knowledge about itself and about its own knowledge 
(meta-knowledge). An agent invariably faces novel tasks 
[C5] where its task knowledge and/or computational 
resources [C7] are insufficient to determine the appropriate 

behavior given the environmental complexity [C1], but in 
which there are regularities it can take advantage of [C3]. 
In these situations, an intelligent agent can detect its lack 
of task knowledge, and then use meta-knowledge to 
acquire new task knowledge. An agent can use other types 
of meta-cognitive knowledge to set its own goals and to 
direct future behavior in preparation for tasks, events, and 
situations that it expects to arise in the future. This is in 
response to the characteristics listed above as well as to the 
fact that the agent exists beyond a single task or problem 
[C8]. The exact range of necessary meta-cognitive 
knowledge is unclear – some appears to be necessary, but 
complete meta-cognitive knowledge is not required, at 
least in humans. Humans do not always know exactly what 
they know and often only discover what they know when 
they are put in a situation where that knowledge is useful.  

R9. SUPPORT A SPECTRUM OF BOUNDED AND 

UNBOUNDED DELIBERATION  
At one extreme, the agent must be able to react with 
bounded computation [C5] for tasks with time constraints 
close to those of the dynamics of the environment [C2]. It 
cannot reason or plan from first principles for all tasks 
because of inherent limits to its computational resources 
[C7]. At its most primitive level, the absolute time to 
respond must be bounded by the environmental dynamics 
for some subclass of its responses. Reactivity would be 
sufficient if the agent's knowledge of the environment and 
other agents was complete and correct and encoded for 
bounded access below the level of dynamics of the 
environment. However, in general, that is not possible 
because of the complexity of the environment [C1], the 
diversity of tasks [C5] and the limitations on 
environmental interaction [C6]. Moreover, at the other 
extreme, when there are sufficient computational resources 
available relative to the dynamics of the environment and 
task, the agent should have the ability to compose novel 
responses based on its knowledge that takes advantage of 
regularities in the tasks and environment [C3]. This 
composition is the basis for planning and it takes time, but 
allows the agent to integrate its diverse and potentially 
large bodies of knowledge for novel situations [R1-R8]. In 
between these two extremes, the agent must balance the 
tradeoff between deliberation and reaction based on its 
knowledge of the situation. 

R10. SUPPORT DIVERSE, COMPREHENSIVE LEARNING 
An agent with long-term existence [C8] requires different 
learning mechanisms when exposed to diverse 
environments [C1] and tasks [C5] having complex 
interactions [C6]. Learning takes advantage of regularities 
[C3], some of which can be extracted from a single 
situation in which all of the information is available at the 
same time, whereas in others; the information may be 
spread across time. Although general learning mechanisms 
exist, they are invariably biased toward specific types of 
knowledge that are available to the agent in different ways 
and often at different time scales. Moreover, a general 
cognitive architecture should be able to learn all the types 
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of task-specific knowledge it represents and uses, a 
property we call the learning completeness principle. A 
significant component of our own research is to explore 
what types of knowledge different learning mechanisms 
can contribute to achieving learning completeness.  

R11. SUPPORT INCREMENTAL, ONLINE LEARNING  
An agent with long-term existence [C8] that is in a 
complex active environment [C1, C2] with regularities 
[C3] must learn and modify its knowledge base so that it 
can take advantage of the environmental regularities [C3] 
when they are available. Once the experience has 
happened, it is gone. Only the information that the agent 
itself stores while it is behaving is available to guide its 
future behavior. This is not to suggest that an agent cannot 
recall prior situations and perform additional analysis at 
some future time [R6]; however, some primitive learning 
mechanism must store away the experience for that future, 
more deliberative learning. Moreover, the mechanisms for 
storing and retrieving those experiences must scale as more 
and more experiences are captured. Incremental learning 
incorporates experiences when they are experienced. 

One implication of this requirement (together with the need 
for large bodies of knowledge) is that new knowledge must 
be acquired at low, bounded computational cost in real 
time; learning should not disrupt the agent’s ongoing 
behavior by significantly slowing overall processing and 
negatively impacting its ability to react to its environment.  

Summary 

In this paper, we outlined characteristics of the 
environments, tasks, and agents important for human-level 
intelligence and, from these characteristics, derived 
requirements for general cognitive architectures. 
Architectural designs following from meeting the 
requirements should support human-level behavior across a 
wide range of tasks, embedded in environment similar to 
the real world. Figure 2 summarizes the analysis described 

above. The figure highlights the dense connectivity 
between characteristics and requirements – no single 
characteristic is solely responsible for any requirement and 
no characteristic influences only a single requirement.  

Many characteristics are necessary to derive most of their 
associated requirements because eliminating a 
characteristic allows for extreme simplification. Simple 
environments [C1] require only simple agents. There is no 
need to have large bodies of knowledge, no need for rich 
representations of action, and limited need to learn. An 
agent that only pursues simple well-known tasks [C5], or 
has unlimited computation [C7] can be much simpler than 
one that supports agents and tasks, in an environments with 
these characteristics. At the extreme is the requirement for 
task-relevant regularities [C3], which has universal impact 
because only with environmental regularities are 
knowledge, reasoning, learning, and architecture useful. 

Discussion & Conclusion 

The requirements we derived (R0-R11) define a rough 
design envelope for underlying architectures. However, the 
role of knowledge in agent development complicates 
attempts to match the achievement of specific requirements 
with specific architectural components. Behavior in an 
agent is the result of the interaction between knowledge 
and architecture; some requirements may be achieved 
through general knowledge combined with multiple 
architectural components. For example, many cognitive 
architectures do not have explicit architectural support for 
planning. Not including such architectural support 
simplifies these architectures, but requires encoding of 
knowledge representation(s) and algorithms for planning 
using architectural primitives. Achieving a requirement 
directly with the architecture allows for a more efficient 
implementation. Achieving a requirement in knowledge 
usually leads to a simpler architecture while providing 
more flexibility and the possibility of improving the 
capability through learning. This tension is analogous to 

 
 C1 

Complex 

Environ. 

C2 

Dynamic 

Environ. 

C3 

Task 

Regularities 

C4  

Social 

Environ. 

C5 

Complex 

Tasks 

C6 

Limited 

Interaction 

C7 

Limited 

Computation 

C8 

Long-term 
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R0 Fixed structure   X     X 

R1 Symbol system X  X X X    

R2 Modularity knowledge  X X  X X X  

R3 Large bodies knowledge X  X X X X  X 

R4 Levels of generality X X X  X    

R5 Levels of knowledge   X  X X X  

R6 Non-perceptual represent.  X X  X X   

R7 Rich action representations X X X  X X X  

R8 Meta-cognitive knowledge X  X  X  X X 

R9 Spectrum of deliberation X X X  X X X  

R10 Comprehensive learning X  X  X X  X 

R11 Incremental learning X X X    X X 

Figure 2: Connections between environment, task, and agent characteristics (C1-C8) and requirements (R0-R11). 
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RISC vs. CISC trade-offs in traditional computer 
architecture. 

Our own hypothesis is that significant bodies of knowledge 
in combination with the architecture are required for many 
of the cognitive capabilities needed to achieve human-level 
performance. Examples include natural language 
processing, logical thinking, qualitative reasoning, and 
multi-agent coordination. However, the requirements listed 
above do not address what knowledge is necessary to 
support such capabilities, or how that knowledge is 
acquired and encoded. Thus, even if we create 
architectures that satisfy all of the listed requirements, we 
will still fall short of creating human-level agents until we 
encode, or the systems learn on their own, the content 
required for higher-level knowledge-intensive capabilities.  

Even when we restrict ourselves to considering the 
requirements within the context of cognitive architecture 
independent of knowledge, it is difficult to evaluate the 
sufficiency of these requirements by examination alone. 
Many of the requirements are qualitative and vague, 
making them difficult to apply to existing architectures. 
For example, how do we judge whether an architecture 
supports sufficient levels of generality in its knowledge 
representations, or sufficient representations of meta-
cognitive knowledge, or sufficiently comprehensive 
learning mechanisms? Thus, an important goal for future 
research in human-level agents is to refine these 
requirements as we learn more about the capabilities that 
are necessary for human-level behavior. 

The current list or requirements emphasizes necessity and 
may be missing some yet to be discovered requirements 
that are needed to guarantee human-level behavior. These 
requirements may arise from interactions among the 
existing characteristics (C1-C8) or they may arise because 
of the existence of yet additional characteristics of agents, 
tasks, and environments that are relevant to achieving 
human-level intelligence. 

Our own hypothesis is that one of the best ways to refine 
and extend these sets of requirements and characteristics is 
to develop agents using cognitive architectures that test the 
sufficiency and necessity of all these and other possible 
characteristics and requirements on a variety of real-world 
tasks. One challenge is to find tasks and environments 
where all of these characteristics are active, and thus all of 
the requirements must be confronted. A second challenge 
is that the existence of an architecture that achieves a 
subset of these requirements, does not guarantee that such 
an architecture can be extended to achieve other 
requirements while maintaining satisfaction of the original 
set of requirements. Usually there are too many potential 
interactions between architectural components to guarantee 
such an incremental approach. It is for these reasons that 
our own research is inspired by studies of human 
psychology. We know that the human cognitive 
architecture is sufficient for generating the behavior we 
seek from our agents, and if we build systems that capture 

the core functionality of components of the human 
architecture, it is more likely that we will avoid dead ends 
in cognitive architecture development. Independent of 
what approach is used to develop a cognitive architecture, 
we propose that exploring how different architectures 
address (or do not address) these requirements, both 
theoretically and empirically, is our best chance to advance 
our knowledge of how cognitive architecture can support 
human-level intelligence.  
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