
Quantitative Spatial Reasoning for General Intelligence

Unmesh Kurup and Nicholas L. Cassimatis
Rensselaer Polytechnic Institute

110 8th St, Troy, NY 12180
{kurup,cassin}@rpi.edu

Abstract
One of the basic requirements of an intelligent agent is the
ability to represent and reason about space. While there are
a number of approaches for achieving this goal, the recent
gains in efficiency of the Satisfiability approach have made it
a popular choice. Modern propositional SAT solvers are ef-
ficient for a wide variety of problems. However, conversion
to propositional SAT can sometimes result in a large number
of variables and/or clauses. Diagrams represent space as col-
lections of points (regions) while preserving their overall ge-
ometric character. This representation allows reasoning to be
performed over (far fewer number of) regions instead of indi-
vidual points. In this paper, we show how the standard DPLL
algorithm augmented with diagrammatic reasoning can be
used to make SAT more efficient when reasoning about space.
We present DPLL-S, a complete SAT solver that utilizes dia-
grammatic representations when reasoning about space, and
evaluate its performance against other SAT solvers.

Introduction
One of the fundamental aspects of general intelligence is the
ability to represent and reason about space. Successful ap-
proaches such as the Region Connection Calculus (Randell,
Cui, and Cohn 1992) have concentrated on qualitaive spatial
reasoning but an intelligent agent must be capable of rea-
soning about quantitative (or metric) space as well. With
the advent of faster and more efficient SAT solvers, reason-
ing via translation to SAT has yielded results that are often
as good as or even better than standard approaches. How-
ever, one drawback of propositionalizing first-order theo-
ries is the inherent explosion in variables and clauses. This
is particularly true in quantitative spatial reasoning where
space is usually represented using a simple Cartesian sys-
tem. An object in this representation has a (x, y) coordi-
nate that uniquely identifies where it lies in the space. This
coordinate is also used to reason about the spatial relation-
ships that the object forms with other objects in the same
space. Translating a problem in this metric domain into
propositional SAT involves propositions that capture the re-
lationships between each pair of points in the space as well
as instantiating propositions that capture the possibility that
an object can be located anywhere in the space. As the
space grows larger, the number of variables and clauses in
the translation increase, making it more difficult to solve the
problem.

The inclusion of domain-specific knowledge into the
satisfiability process is captured under the umbrella of
Satisfiability-Modulo Theories or SMT (DeMoura and Rue
2002). In SMT, parts of the formula that refer to the specific
theory are handed over to the theory-specific solver while
the rest is handled by the SAT solver. Quantifier Free Inte-
ger Difference Logic (QF-IDL) is one of the theories com-
monly used for reasoning about space in the SMT approach.
In QF-IDL, spatial relationships between objects are repre-
sented as a set of inequalities. For example, the inequality
ax ≤ bx − 1, where ax and bx are the x-coordinates of ob-
jects a and b respectively, represents the fact that object a is
to the left of object b. The inequalities can represented as a
graph structure and efficient algorithms exist that can check
for satisfiability by checking for the prescence of loops in
the graph (Cotton 2005). However, while these inequalities
are efficient in capturing the relationship between point ob-
jects, expanding their use to capture the representation of 2-d
shapes has at least two drawbacks - One, the number of in-
equalities needed to represent a shape increases as the com-
plexity of the shape increases since a shape is represented as
a set of inequalities between its vertices. Two, when a shape
(even a simple one such as rectangle) is allowed to rotate,
the relationship between its vertices change and inequali-
ties will have to be written for each possible rotation of the
shape. The number of such sets of inequalities depends on
the fineness to which the rotation needs to be captured. In
this paper, we propose the use of diagrammatic models as
the appropriate theory for representing and reasoning about
space and show how the SAT approach can be augmented
to use diagrammatic models as appropriate during solving.
We evaluate our approach against the MiniMaxSat algorithm
(Heras, Larrosa, and Oliveras 2008) in a spatial constraint
satisfaction problem.

Satisfiability with Spatial Reasoning
Consider a 3x3 grid. To encode the information that object
a isNext to object b, we would need a SAT formula like the
following (in non-CNF form): (AT (a, 1, 1)∧(AT (b, 1, 2)∨
AT (b, 2, 1)∨AT (b, 2, 2)))∨(AT (a, 1, 2)∧(AT (b, 1, 1)∨
AT (b, 2, 1)∨AT (b, 2, 2)∨AT (b, 1, 3)∨AT (b, 2, 3)))∨ . . .
and so on till every location in the grid has been accounted
for. Even for simple spatial relations such as Left or Above
the number of variables and clauses needed will grow as the

Published by Atlantis Press, © the authors
 1

size of the grid grows. Propositionalizing space for the pur-
poses of SAT is, thus, an expensive approach. Diagrams, on
the other hand, can represent information more compactly
by abstracting individual locations that share constraints into
groups. We extend the current satisfiability approach to in-
clude diagrammatic models as part of the representation. We
first introduce the concept of a diagram.

Diagram
Definition 2.1 (Object Location) Given a grid of size Ng

and an object a, we define
• L(a) = (x, y)|1 ≤ x, y ≤ Ng where (x, y) is the location

of object a in the grid.
• Lx(a) = x|1 ≤ x ≤ Ng and Ly(a) = y|1 ≤ y ≤ Ng

where x and y are the x- and y-coordinates of a in the grid

Definition 2.2 (Relations) Spatial reasoning is based
on the constraints that hold between objects in the
space. We define five spatial constraint types (T =
{Left|Right|Above|Below|Near}) that we use in this pa-
per. More can be defined and added as necessary.

Given a grid of size Ng , objects a, b and Ne a nearness
value, a constraint c holds between objects a and b iff one of
the following hold
• c = Left and Lx(a) < Lx(b)
• c = Right and Lx(a) > Lx(b)
• c = Above and Ly(a) < Ly(b)
• c = Below and Ly(a) > Ly(b)
• c = Near and Lx(b) − Ne ≤ Lx(a) ≤ Lx(b) +
Ne, Ly(b)−Ne ≤ Ly(a) ≤ Ly(b) +Ne

Definition 2.3 (Possibility Space) As mentioned earlier,
one of the disadvantages of propositionalizing space is the
need to account for the possibility of an object being in ev-
ery location in the space. However, in qualitative reason-
ing, it is the relationships that hold between objects that
matter rather than their exact locations in space. For ex-
ample, in satisfying the constraint Left(b) for an object a,
we don’t care whether a is one spot to the left of b or two
spots to the left and so on. This means that we can gen-
eralize away from exact locations to location groups where
the members of each group share certain common spatial
constraints. Generalization in this manner leads to lesser
number of individuals resulting in better performance when
converted to propositional SAT. The concept of the possi-
bility space (Wintermute and Laird 2007) allows us to do
this generalization. A possibility space is a set of points
that satisfy some set of spatial constraints. Every object
in a diagram resides in a possibility space and spatial re-
lationships between objects can be computed by finding
intersections between these possibility spaces. For exam-
ple, given a 3x3 grid, an object a at location (2,2), and an
object b with constraints C(b) = {Left(a), Above(a)},
Ps(Left(a)) = {(1, 1), (1, 2), (1, 3)}, Ps(Above(a)) =
{(1, 1), (2, 1), (3, 1)} and Ps(b) = (Ps(Left(a)) ∩
Ps(Above(a))) = {(1, 1)}.

We define possibility spaces as follows: Given a grid of
side Ng , an object a and c ∈ T , we define

1. Ps(c(a), Ii), the possibility space of a spatial constraint
c(a) with truth value Ii as follows

• c = Left, Ii = true, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; xi < Lx(a)}

• c = Left, Ii = false, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; xi ≥ Lx(a)}

• similarly for c = Right, Above, Below and Ii =
true, false

• c = Near, Ii = true, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; Lx(a) − Ne ≤ xi ≤ Lx(a) +
Ne; Ly(a)−Ne ≤ yi ≤ Ly(a)+Ne; 1 ≤ Ne ≤ Ng}
• c = Near, Ii = false, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; (xi, yi) /∈ Ps(Near(a), true)}

2. Ps1 ∩ Ps2 , the intersection of two possibility spaces as
follows

• Ps1 ∩ Ps2 = {(xi, yi)|(xi, yi) ∈ Ps1 , (xi, yi) ∈ Ps2

3. Ps(a), the possibility space of an object a as follows

• Ps(a) =
⋂|C(a)|

i=1 Ps(ci(a), I(ci(a)) where C(a) =
{c1, ..., ck} is the set of spatial constraints on a and
I(ci(a)) = true|false is the truth value of the con-
straint ci(a)

Definition 2.4 (Diagram) Finally, object locations, pos-
sibility spaces and relations come together in the diagram-
matic representation. A diagram is a collection of objects
with their locations and possibility spaces. Reasoning about
the spatial relationships between objects in a diagram can be
accomplished using the objects’ possibility spaces and loca-
tions. Formally, we define a diagram as follows:

A diagram d is a 6-tuple < Nd, O, T, C, I, L > where

• Nd denotes the side of the diagram (for the purposes of
this paper, diagrams are considered to be square)

• O = {a1, a2, . . . , ak}is a set of objects

• T = {Left|Right|Above|Below|Near} is a set of rela-
tion types

• C is a set of spatial constraints from T that holds between
objects in O

• I : C → true|false is an assignment of truth values to
the constraints in C

• L : O → Nd×Nd, the location of objects in the diagram

C is a set of spatial constraints for objects in the diagram. If
C(ai) = ∅, then a’s possibility space is the entire diagram.
L(ai) is the location of ai in the diagram such that L(ai) ∈
Ps(ai). This location is chosen such that it is at the center
of the object’s possibility space.

Definition 2.5 A diagram d satisfies a set of spatial con-
straints C iff for each c(a, b) ∈ C and a, b ∈ O, the con-
straint C holds between a and b in d.

Satisfiability with Spatial Reasoning (SAT-S)
In order to combine the best of both SAT and diagrammatic
reasoning, we introduce a version of SAT called SAT-S, that

Published by Atlantis Press, © the authors
 2

allows for the representation of spatial information using di-
agrammatic models. Formally,

A problem specification in SAT-S is given by the 6-tuple
Ss =< φ,P,O, T,C,M >where

• φ is a SAT formula in CNF form

• P is the set of variables in φ

• O is a set of objects

• T = {Left|Right|Above|Below|Near} is a set of spa-
tial relation types

• C is a set of constraints of the form c(a, b) where c ∈ T
and a, b ∈ O
• M : P → C is a mapping from P to C

φ and P are the same as in SAT. O is a set of objects in
the domain. T is the set of spatial relation types that are
relevant in the domain. C is a set of constraints from the
set T × O × O and represents the spatial relations that are
important in the domain. Finally, M is a mapping from the
set of variables to the set of relations. This mapping allows
the SAT-S solver to recognize variables that represent spatial
literals. For convenience, in the remainder of this paper, we
refer to such variables as spatial variables, even though they
are first-order propositions.

Solutions in SAT-S
A solution (model) to a problem in SAT-S is an assignment of
truth values, Ip = {true, false, neutral} to the variables
in P . A valid model in SAT-S is an assignment Ip such that

• Every clause in the φ evaluates to true and

• [∃P ′ ⊆ P |(∀p ∈ P ′)Ip(p) 6= neutral ∧M(p) 6= ∅] ⇒
|D| > 0 ∧ (∀d ∈ D, p ∈ P ′)d satisfies M(p), where D is
a set of diagrams constructed during the solving process.

The set of diagramsD represents the possible configurations
of objects in O given the spatial variables that have been as-
signed values. If a problem in SAT-S has propositions that
denote spatial relations and these propositions have been as-
signed values in the solution then there must be at least one
diagram in D and every diagram in D must satisfy these spa-
tial relations.

DPLL-S - An Algorithm for Solving Problems
in SAT-S

Algorithm 1 shows the DPLL-S algorithm. The main dif-
ference from the original DPLL algorithm is as follows:
When a value is set for a variable, DPLL-S checks to see
if it is a spatial variable. If it is not, the algorithm pro-
ceeds like in standard DPLL. If it is a spatial variable, say
M(v) = c(a, b), DPLL-S constructs a set of diagrams that
satisfy the proposition in the following way –

1. If there are no diagrams (this is the first spatial proposition
whose value has been set), it creates an empty diagram d
and adds b (assigns its possibility space and a location
within the possibility space) to this diagram.

Algorithm 1 DPLL-S
Procedure DPLL-S(C,P,D,M)
if C is empty, return satisfiable
if C contains an empty clause,
return unsatisfiable
if C contains a unit clause
if variable in unit clause is spatial
D’ = Propagate(D,M(v),true);
if D’ is empty, return unsatisfiable
return DPLL-S(C(v=true),P,D’,M)

return DPLL-S(C(v=true),P,D,M)
pick an unassigned variable v
if v is spatial
D’ = Propagate(D,M(v),true)
if D is empty, return unsatisfiable
else
D’=D
if DPLL-S(C(v=true),P,D’,M) is satisfiable,
return satisfiable

else
if v is spatial
D’ = Propagate(D,M(v),false)
if D is empty, return unsatisfiable
else
D’=D
return DPLL-S(C(v=false),P,D’,M)

2. If one of the objects is present in the diagrams in D, then
from each diagram di in D, new diagrams {di1, . . . , dik}
are constructed such that every dijsatisfies c(a, b). In ad-
dition, each dij also satisfies a different subset of the set
of all possible relevant relations between a and O given
di where O is the set of all objects in d. Thus, the new set
of diagrams D′ = {d11 ∪ . . . ∪ dlk} where |D| = l. If
D′ = ∅, the procedure returns unsatisfiable.

3. If both objects are present in D, D′ = {di|d ∈ D; di

satisfies c(a, b)}. If D′ = ∅, the procedure returns unsat-
isfiable.

Figure 1: Diagrams created by Propagate for Above(c,a)

The creation of new diagrams once a spatial variable is
found is done by the propagate method (shown in Algorithm
2) which takes a spatial constraint M(v), the truth value Iv
of this constraint and a set of diagramsD that satisfy a set of
constraints C and produces a new set of diagrams D′ such
that every diagram in D′ satisfies C ∪M(v) (if Iv = true)
or C ∪ ¬M(v) (if Iv = false). Each individual diagram
in D′ is constructed such that it captures some subset of the

Published by Atlantis Press, © the authors
 3

Algorithm 2 Propagate
Procedure Propagate(D,c(a,b),tvalue)
if a and b in d ∈ D,
eliminate all d from D
that do not satisfy c(a,b).
return D
if D is empty,
create a new diagram d,
add b to d
D’ = empty set of diagrams
for every d ∈ D

C = {c(a, o)|c ∈ T ; o ∈ O}
I is the set of all
possible truth value assignments
to c ∈ C and Ii(cj) is the ith
truth value assignment for cj.

D’ = D ∪ d
′
i where

d
′

i = di ∪ a where
Ps(a) =
Ps(r(b)) ∩

(⋂
P
|C|
j= Ps(cj , Ii(cj)

)
, Ps(a) 6= ∅

set of all possible relevant spatial relationships between the
new object being introduced into the diagram and the objects
currently in the diagram. Together, these diagrams capture
all possible spatial relationships that the new object can be
in given the constraint set C ∪M(v).

As an example, consider the diagram in Fig 1(a). It has
two objects A and B with C(A) = Left(B). For exposi-
tory purposes, let us assume that there are only two types of
spatial relations that are relevant to our problem – Left and
Above, i.e., T = {Left,Above}. Let M(v) = Above(c, a)
where c is the new object being introduced into the diagram.
Then,

d1 = d+ c where P (c) = Ps(Above(A) ∩ ¬Left(A) ∩
¬Left(B) ∩ ¬Above(b))

...
d8 = d+ c where Ps(c) = Ps(Above(A) ∩ Left(A) ∩

Left(B) ∩Above(b))
In general, given a diagram d, a new object c, a set of con-

straints C and an assignment of truth values I to elements in
C,

D′ = D + di, where
di = d+ c where Ps(c) = Ps(r(b)) ∩(⋂

P
|C|
j= Ps(cj , I(cj)

)
, Ps(c) 6= ∅

In the worst case, there are |D|×2|T |×|C|−1diagrams pro-
duced at each propagate step. On average, only a subset
of these diagrams are possible. In the previous example,
the diagrams where Ps(c) = Ps(Above(A) ∩ Left(A) ∩
¬Left(B) ∩ Above(B)) is not possible because an object
cannot be both to the Left of A and not to the Left of B

given C(a) = {Left(b)}. In such a case, Ps(c) = ∅ and the
diagram is eliminated.

Completeness
Lemma 3.1 - By definition of Left, Right, Above, Below
and Near, the following are true

1. Left(a, b) = Right(b, a) and vice versa
2. Above(a, b) = Below(b, a) and vice versa
3. Near(a, b) = Near(b, a)
Lemma 3.2 - Given a diagram of size Nd, set of spa-
tial constraints C(b) = {c1(a1), . . . , cj(ak)} on object b,
there is a location L(b) for object b that satisfies C(b) iff(⋂|C(b)|

j=1 Ps(cj,I(cj))
)
6= ∅

Proof: By definition of L in diagrams.

Theorem 3.1 Given a problem in SAT-S, Ss =<
φ,P,O, T,C, I,M > for which a solution < I ′D > ex-
ists, where |D| > 0, DPLL-S will find at least one diagram
d such that d satisfies the constraints C

Proof: In each execution step DPLL-S handles one of the
following cases

1. Not a spatial variable. Continue as in DPLL
2. |C| = k + 1 and |O| = m + 1. A new object am+1is

added to D with the constraint ck+1(aj) where aj ∈ O is
an object in D. Then, by construction and by lemma 3.2,
all possible relationships between am+1and all objects in
D including aj are satisfied by D′.

3. |C| = k + 1 and |O| = m. A new constraint ck+1(aj) is
added to an existing object ai.

(a) ai was added after aj - By construction and lemma 3.2,
all possible relationships between ai and aj given C
are satisfied.

(b) aj was added after ai - By construction, lemma 3.2 and
lemma 3.1, all possible relationships between ai and aj

given C are satisfied.

Hence proved.

Experiments
We compared the performance of DPLL-S to that of Min-
iMaxSAT (Heras, Larrosa, and Oliveras 2008) in a spatial
reasoning problem called the placement problem, a generic
version of the 8-queens puzzle. The choice of MiniMaxSAT
as the standard for a traditional SAT solver was one of con-
venience. zChaff or SATzilla may have been marginally bet-
ter but the reasons why MiniMaxSAT performs so poorly
holds for the other solvers as well.

The Placement Problem
The objective of the Placement problem is to locate a set
of objects in a grid space such that they satisfy a set of
spatial relations. Formally, a placement problem P can
be defined as a 4-tuple P =< Ng, O, T,R > where Ng

is the side of a square grid , O is a set of objects, T =
{Left|Right|Above|Below|Near} is a set of spatial rela-
tion types, Ne = Ng/3 is a nearness value and R is a set

Published by Atlantis Press, © the authors
 4

SAT SAT-S
#Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3

Grid Size #vars #clauses #vars #clauses #vars #clauses #vars #clauses #vars #clauses #vars #clauses
25 153 128893 153 161952 153 377511 3 3 3 3 3 3
35 213 461408 213 765482 213 1217816 3 3 3 3 3 3
45 273 770949 273 2103939 273 2282724 3 3 3 3 3 3
55 333 1795243 333 5752032 333 5340666 3 3 3 3 3 3
65 393 3609053 393 10913087 393 16353831 3 3 3 3 3 3
75 453 10119709 453 16119434 453 22119159 3 3 3 3 3 3
85 513 10239193 513 20424402 513 36685921 3 3 3 3 3 3

Table 1: Number of variables and clauses for SAT and SAT-S

Grid Size MiniMaxSAT times DPLL-S times MiniMaxSAT(SAT-PP) times
#Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3

25 0.34s 0.43s 1.31s 0.016s 0.0s 0.0s 0.82s 0.25s 0.02s
35 1.590s 2.46s 3.87s 0.0s 0.016s 0.0s 0.06s 0.02s 0.63s
45 2.334s 6.61s 6.93s 0.0s 0.0s 0.0s 0.5s 0.27s 0.06s
55 5.36s 17.46s 15.83s 0.0s 0.0s 0.0s 1.13s 0.18s 0.19s
65 10.97s 1m22.7s 2m26.4s 0.0s 0.0s 0.0s 1.09s 0.17s .07s
75 1m54.5s 2m31.6s 10m39s 0.0s 0.0s 0.0s 0.23s 0.26s 0.32s
85 1m59.6s 5m31.2s - 0.0s 0.0s 0.0s 0.36s 0.03s 0.21s
90 9m38.8s - - 0.0s 0.0s 0.0s 5.22s 0.03s 0.25s

Table 2: Comparison of MiniMaxSat and DPLL-S on Placement problems of increasing grid size

of spatial relations that hold between objects in O. A solu-
tion to the placement problem P is given by an assignment
S : O → Ng ×Ng that identifies a unique location for each
object a∈O such that all constraints in R are satisfied.
Translation from P to SAT
Literals For every object ai ∈ O and location (k, l) in
the grid, we assign two variables of the form ATxk

(ai) and
ATyl

(ai), corresponding to the object’s x and y-coordinates.
A pair of variables ATxk

(ai) and ATyl
(ai) are true iff the

object ai is at location (k, l) in the grid. For every relation
r(ai, aj) in R, we add a variable rm such that rm is true iff
r(ai, aj) ∈ R.
Clauses For every object ai, we add two
clauses

(
(ATx1(ai)) ∨ . . . ∨ATxNg

(ai)
)

and(
(ATy1(ai)) ∨ . . . ∨ATyNg

(ai)
)

For each Left relation Left(ai, aj), we add clauses
that capture the following constraint Left(ai, aj) ⇒[(

(ATx1(ai) ∧ATx2(aj)) ∨ . . . ∨ (ATx1(ai) ∧ATxNg
(aj))

)
∨ . . . ∨

(
(ATxNg−1(ai) ∧ATxNg

(aj))
)

]

We add similar constraints for each Above, Right,
and Below relations.

For each Near relation Near(ai, aj), we
add clauses that capture the following constraint
Near(ai, aj) ⇒

∨Ng,Ng

k=1,l=1 (ATxk
(ai) ∧ ATyl

(ai) ∧
(
∨k+Ne,l+Ne

m=k−Ne,n=l−Ne
(ATxm

(aj) ∧ ATyn
(aj)))) where

1 ≤ m,n ≤ Ng

For every object ai, we add clauses that capture the con-
straint that an object can be only at one location in the
grid [(ATx1(ai) ∧ ATy1(ai) ∧ ¬(ATx1(ai) ∧ ATy2(ai)) ∧
. . . ∧ ¬(ATxNg

(ai) ∧ ATyNg
(ai))) ∨ . . . ∨ (ATxNg

(ai) ∧
ATyNg

(ai))]
For every location (k, l), we add clauses that capture

the constraint that there can be only object at that location
[((A(Txk

(a1) ∧ ATyl
(a1)) ∧ ¬(A(Txk

(a2) ∧ ATyl
(a2)) ∧

. . .∧¬(A(Txk
(a|O|)∧ATyl

(a|O|)))∨ . . .∨ (A(Txk
(a|O|)∧

ATyl
(a|O|))]

All constraints were converted to CNF form without an
exponenetial increase in the number of clauses. Due to space
constraints, we do not provide a proof of this translation but
a proof by contradiction is straightforward.

Translation from P to SAT-S
Literals For every relation r(ai, aj) in R, we add a vari-
able rm, and set M(rm) = r(ai,aj)

Clauses For every relation r(ai, aj) that is true, we add a
clause containing the single literal rm. We add a clause with
the single literal ¬rm otherwise.

Results
We ran MiniMaxSAT and DPLL-S on a set of problems that
varied based on the grid size Ng , the number of relations R
and the number of objects O. All problems in the set were
solvable and were created by randomly placing the requisite
number of objects in a grid of the relevant size. Relations
were then randomly chosen. Table 1 shows the number of
variables and clauses for SAT and SAT-S problems for dif-

Published by Atlantis Press, © the authors
 5

#relations MiniMaxSAT DPLL-S
5 0.9s 3.89s

10 2.49s 5.8s
15 3.49s 5.69s
20 4.19s 6.12
25 5.37s 6.19s
30 23.01s 1.46s
35 8.09s 6.52s
40 13.59s 4.76s

Table 3: MiniMaxSAT and DPLL-S runtimes for increasing
number of relations

#objects MiniMaxSAT DPLL-S
3 0.43s 0.02s
4 1.46s 0.02s
5 1.33s 0.76s
6 1.95s -

Table 4: MiniMaxSat and DPLL-S runtimes for increasing
number of objects

ferent grid sizes. The size of a SAT-S problem depends
on the number of relations that have to be satisfied. Prob-
lem sizes in SAT vary on the grid size, number of objects,
number of relations and relation type. Near relations are
more costlier as they result in many more clauses than the
other four relation types. For this reason, we have broken
down Tables 1 and 2 based on the number of Near rela-
tions as well. Table 2 shows the execution times for Mini-
MaxSAT and DPLL-S for increasing grid size. We stopped
a run if it did not produce a result within 15 minutes. For
comparison purposes, we used the propagate method to pre-
processes a SAT-S problem into a SAT problem whose run-
times are shown in the table as SAT-PP. The runtime for a
single problem in SAT-PP is the sum of the times required to
pre-process it into SAT and solve using MiniMaxSAT. From
the table it is clear that a SAT-S problem requires virtually
no time to run. This is despite the fact that the DPLL-S im-
plementation is not geared towards efficiency. It was writ-
ten using convenient but inefficient data structures and run
in parallel with other processes on the system.The speedup
obtained is purely due to the use of diagrammtic models.

Table 3 shows the comparison between MiniMaxSAT and
DPLL-S for increasing number of relations given a stan-
dard grid size of 25x25 and 5 objects. For MiniMaxSAT,
as the number of relations increase, the runtime increases.
For DPLL-S, the increase is minimal because given a fixed
number of objects, as the relations increase, the propagate
method merely has to eliminate diagrams that do not satisfy
relations instead of having to generate new diagrams.

Table 4 shows the comparison between MiniMaxSAT and
DPLL-S for increasing number of objects with the grid size
fixed at 25. This is where DPLL-S underperforms Mini-
MaxSAT. By the time the number of objects gets to six,
there are so many diagrams being generated by the propa-
gate method that it becomes impossible for the algorithm to

finish within the 15 minute limit. Since the number of di-
agrams generated increases exponentially, even an efficient
implementation of the current DPLL-S algorithm would not
be able to solve problems with more than 7 or 8 objects.
There are, however, approaches that could allow us to effec-
tively deal with this problem. Our current work is focused
on maintaining a single diagram rather than the entire set of
diagrams. As spatial constraints arise, this diagram is ma-
nipulated to satisfy these constraints. This strategy, while
preserving completeness will provide better overall scalabil-
ity at the expense of run times with small number of objects.

Conclusion
The satisfiability approach to problem solving has shown
great promise in recent years. However, the effects of propo-
sitionalizing space, makes the satisfiability approach to spa-
tial reasoning expensive. In this work, we have shown how
the satisfiability approach can be augmented with the use
of diagrammatic models to reduce the problem space. Our
approach utilizes diagrams to represent space as discrete re-
gions instead of individual points. This leads to savings in
both problem size and solution times. We introduced a com-
plete solver called DPLL-S, a variation of DPLL, and evalu-
ated it against a current SAT solver MiniMaxSAT in a spatial
reasoning problem. Our approach greatly reduced the num-
ber of variables and clauses in the formula and led to nearly
instantaneous runtimes in many cases for solving the place-
ment problem. One of the problems with the current DPLL-
S approach is the explosions in the number of diagrams as
a function of the number of objects and relations. In future
work, we address these concerns and compare our algorithm
against SMTs such as QF-IDL.

References
Cotton, S. 2005. Satisfiability Checking With Difference
Constraints. Master’s thesis, IMPRS Computer Science.
DeMoura, L., and Rue, H. 2002. Lemmas on demand
for satisfiability solvers. In In Proceedings of the Fifth In-
ternational Symposium on the Theory and Applications of
Satisfiability Testing (SAT), 244–251.
Heras, F.; Larrosa, J.; and Oliveras, A. 2008. Mini-
MaxSAT: An efficient Weighted Max-SAT Solver. Journal
of Artificial Intelligence Research 31:1–32.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spa-
tial logic based on regions and connection. In Proceedings
3rd International Conference on Knowledge Representa-
tion and Reasoning.
Wintermute, S., and Laird, J. 2007. Predicate projection in
a bimodal spatial reasoning system. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence.
Vancouver, Canada: Morgan Kaufmann.

Published by Atlantis Press, © the authors
 6

