
Discovering and characterizing Hidden Variables

Soumi Ray and Tim Oates
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

Abstract

Theoretical entities are aspects of the world that
cannot be sensed directly but that nevertheless are
causally relevant. Scientifc inquiry has uncovered many
such entities, such as black holes and dark matter. We
claim that theoretical entities are important for the
development of concepts within the lifetime of an in-
dividual, and present a novel neural network architec-
ture that solves three problems related to theoretical
entities: (1) discovering that they exist, (2) determin-
ing their number, and (3) computing their values. Ex-
periments show the utility of the proposed approach
using a discrete time dynamical system in which some
of the state variables are hidden, and sensor data ob-
tained from the camera of a mobile robot in which the
sizes and locations of ob jects in the visual eld are ob-
served but their sizes and locations (distances) in the
three-dimensional world are not.

Introduction

Humans, like robots, have limited sensory access to the
physical world. Despite this fact, thousands of years of
scientific inquiry have uncovered much hidden structure
governing the behavior and appearance of the world,
along the way proposing a vast array of entities that we
cannot see, hear, taste, smell, or touch. When Gregor
Mendel discovered genes in the middle of the 19th cen-
tury, he couldn’t experience them in the same way he
could experience, say, the smell of a rose or the color
red. However, genes have causal power that manifests
itself in ways that can be sensed directly. For Mendel,
one such manifestation was the color of the peas of the
pea plants that he bred with one another. Whether
a plant would have yellow or green peas could not be
predicted accurately based solely on observable prop-
erties of the parent plants. The desire to explain this
apparent non-determinism led Mendel to posit the ex-
istence of a causally efficacious entity of the world that
could not be sensed directly, i.e., genes. Such entities
are called theoretical entities.

Theoretical entities are of fundamental importance to
the development of human knowledge. The history of
science is replete with reliance on and corroboration of
the existence of theoretical entities, like genes, atoms,

gravity, tectonic plates, germs, dark matter, electricity,
and black holes. No one has ever seen a black hole, yet
most physicists believe they exist because black holes
accurately explain a wide array of observational data.
Human knowledge would be limited indeed were we re-
stricted to only represent and reason about things that
we can see, hear, taste, smell, or touch.

This paper presents a novel neural network architec-
ture for discovering hidden variables in time series data.
The architecture is able to discover the existence of hid-
den variables, determine their number, and estimate
their values. Empirical results are presented for a dis-
crete time dynamical system and data gathered from a
robots interactions with objects.

Background
McCallum (1996) did early work on hidden states in
the context of reinforcement learning, where hidden
states are typically ignored and traditional reinforce-
ment learning methods are applied in fixed-memory
agents. In other cases an agent’s current percepts are
augmented with history information. The problem in
this situation is one of memory and storage. McCal-
lum proposed a method called instance-based state iden-
tification, where raw data from previous experiences
are stored directly. The simplest instance-based tech-
nique is the nearest sequence memory which is based
on k-nearest neighbors. This technique, though simple,
improved the performance of learning and took fewer
training steps for learning. The main disadvantage of
this technique is that, though it learns good policies
quickly, it does not always learn the optimal policy.

Significant research in the recent past has focused on
the problem of learning Bayesian Networks (BN) from
data. Elidan et al. (2000) presents an algorithm for dis-
covering hidden variables in Bayesian Networks by look-
ing for cliques in network structures learned assuming
all variables are observable. When a hidden variable is
known to exist, they introduce it into the network and
apply known BN learning algorithms. First, using the
standard Bayesian model selection algorithm, a struc-
ture over the observed variables is learned. Then the
structure is searched for sub-structures which they call
semi-cliques. A hidden variable is then introduced to

Published by Atlantis Press, © the authors
 1

break this clique and then learning is continued based
on that new structure.

Similarly, work on planning under uncertainty us-
ing, for example, the Partially Observable Markov Deci-
sion Process (POMDP) framework assumes knowledge
of the number of underlying hidden states (Kaelbling,
Littman, & Cassandra, 1996). The agent whose world
is characterized by the POMDP does not have access
to the state that it actually occupies. Rather, the agent
maintains a belief state, or probability distribution over
states that it might be occupying. This belief state
is Markovian, meaning that no additional information
from the past would help increase the expected reward
of the agent. Again, the goal of this work is not to
discover the existence of a hidden state, but to behave
optimally given knowledge of the existence of hidden
state. More recently, Littman, Sutton, & Singh (2001)
showed that dynamical systems can be represented us-
ing Predictive State Representations (PSRs), or multi-
step, action-conditional predictions of future observa-
tions, and that every POMDP has an equivalent PSR.
PSRs can look both at the past and summarize want
happened and can also look to the future and predict
what will happen. PSR is a vector of tests Rivest &
Schapire (1994) which stores the predictions for a se-
lected set of action-observation sequences. Holmes & Is-
bell (2006) showed that the unobserved or hidden states
can be fully captured by a finite history based repre-
sentation called a looping prediction suffix tree (PST).
They focus on cases of POMDPs where the underlying
transition and observation functions are deterministic.

Latent variables are important in the Psychology and
Social Science research. Bollen (2002) described three
definitions of latent variables: local independence, ex-
pected value true score, and non-deteministic functions
of observed variables and introduced a new notion of
latent variables called ”sample generalizations”. La-
tent variables can be defined non-formally or formally.
Non-formally latent variables can be considered as hy-
pothetical variables or unobserved variables as a data
reduction device. Hypothetical variables are variables
considered imaginary, i.e. not existing in the real world.
Unobservable variables are impossible to be measured.
The third non-formal definition of latent variables de-
fines them as a data reduction device that can be used
to describe a number of variables by a small number of
factors.

One of the most common and popular formal defini-
tions of latent variables is the local independence def-
inition (Lord 1953, Lazarsfeld 1959, McDonald 1981,
Bartholomew 1987, Hambleton et al. 1991). It means
that the observed variables are associated with each
other because of one or more latent variables. If the
latent variables are known and are held constant then
the observed variables become independent. This can
be defined more formally:

P (Y1, Y2, . . . , Yk|N) = P (Y1|N)P (Y2|N) . . . P (Yk|N)
(1)

where Y1, Y2, . . . , Yk are random observed variables and
N is a vector of latent variables.

The next formal definition of latent variables defines
a true score. The true score is calculated as the ex-
pected value of the observed variable for a particular
object. Another definition of latent variables is that
latent variables are non-deterministic functions of the
observed variables, that is, they cannot be expressed as
a function of the observed variables (Bentler 1982). It
might be possible to predict a value of the latent vari-
able but it is not possible to exactly predict the value
of the latent variable based on the observed variables.
The definition introduced by Bollen for latent variables
is sample realization. He said that a latent variable is a
random (or nonrandom) variable for which there is no
sample realization for some observations, that is, there
are no values for those observations. Observed variables
contain sample realization while latent variables do not.

Some of the useful properties of latent variables were
also discussed in Bollen’s paper. A latent variable is de-
noted as a posteriori if it derived from a data analysis.
On the other hand, a priori latent variables are hypoth-
esized before the data analysis is done. Another prop-
erty of latent variables can be understood by finding if
they are affected by the observed variables or observed
variables are the effects of the latent variables.

We are interested in finding hidden variables in time
series data in a partially observable environment. We
are not only interested in discovering hidden variables
but also find the number of hidden variables in a given
situation.

Method
We have designed a novel neural network architecture
for the discovery and quantification of hidden variables.
Our neural network architecture is comprised of two
linked networks, the original network (O net) and the
latent network (L net), as shown in Figure 1. We call
this network the LO net. History values of the observed
process are input into each component network, and the
output of the L net is also an input of the O net.

Consider the problem of predicting the value of a vari-
able x at time t+1, given information up to time t. The
current and previous two values are provided as inputs
to both the original and the latent network and the
next value is predicted as shown in Figure 1. The input
to the latent network is the current and previous two
values at all times. The input to the original network
is initially all three values, but with more learning the
history values are dropped sequentially. This is done
to give more responsibility to the latent network. The
latent network can learn to output an approximation
to the hidden variables. The network is trained using
gradient descent backpropagation.

Since the latent network is not provided with any ex-
ample outputs, the only way it learns is from the errors
back-propagated to it. We want the latent network to
learn the value of the hidden variable. The idea behind
dropping the history inputs from the original network

Published by Atlantis Press, © the authors
 2

Figure 1: Our Network Architecture.

as learning progresses is to make the output from the
latent network a crucial input to the original net. Hence
the performance of the whole network will depend on
what the latent network is learning and we expect the
latent network to approximate the hidden variable. In
our example we have taken a history of size two, i.e.,
the two previous observations. This method can work
for smaller or larger history sizes. The history size will
vary for different domains.

A theorem by Takens (Takens, 1981) states that for
discrete-time deterministic dynamical systems of n vari-
ables, it is possible to exactly recover the topology of
the system by treating each window of 2n consecutive
values of just one variable as a state. This provides the
basis for heuristic ideas in using history values to eval-
uate processes with hidden variables. The use of the
neural network provides us the flexibility to mimic the
transformation in Taken’s theorem without worrying
about its particular functional form. The neural net-
work architecture thus provides a promising approach
for estimating the true underlying system including hid-
den variables.

In our implementation the network has each of its
layers’ weights and biases initialized with the Nguyen-
Widrow layer initialization method. The Nguyen-
Widrow method generates initial weight and bias val-
ues for a layer so that the active regions of the layer’s
neurons are distributed approximately evenly over the
input space. The values contain a degree of random-
ness, so they are not the same each time this function
is called. The training function used to update the
weight and bias values in the network is gradient de-
scent with momentum and adaptive learning rate back-
propagation. The parameter lr indicates the learning
rate, similar to simple gradient descent. The parameter
mc is the momentum constant that defines the amount
of momentum. mc is set between 0 (no momentum)
and values close to 1 (high momentum). A momentum

constant of 1 results in a network that is completely in-
sensitive to the local gradient and, therefore, does not
learn properly. The momentum constant (mc) used was
0.9. The learning rate (lr) we have chosen is 0.01. For
each epoch, if performance decreases toward the goal,
then the learning rate is increased by the factor lr-inc
(1.05). If performance increases by more than the fac-
tor max-perf-inc (1.04), the learning rate is adjusted by
the factor lr-dec (0.7) and the change, which increased
the performance, is not made. A transfer function is
used to calculate the ith layer’s output, given the layer’s
net input, during simulation and training. Backprop-
agation is used to calculate derivatives of performance
(perf) with respect to the weight and bias variables X.
The network’s performance is measured according to
the mean squared error. Each variable is adjusted ac-
cording to gradient descent with momentum given in
Eq 2,

d X = mc ∗ d Xprev + lr ∗ (1−mc) ∗ d perf/d X (2)

where d Xprev is the previous change to the weight or
bias. The transfer function used to calculate the hidden
layer’s output is the tan-sigmoid transfer function and
the output layers use a linear transfer function.

Robot Data
Real world data was provided for this project by a sur-
veyor SRV-1 Blackfin robot. The robot consists of a
camera mounted on a pair of tank style treads that
can be controlled remotely by a user interface on a lap-
top. The robot was placed in a fairly uniform envi-
ronment (in this case the UMBC Department of Com-
puter Science lobby) and driven by a human around
a target. The targets consist of several brightly col-
ored boxes, easily distinguishable from the surrounding
environment by our image processing software. The
surveyor would approach a target from different an-
gles, keeping it in view the entire time for some trials,
and for others occasionally facing different directions.
Each frame transmitted from the surveyor’s camera was
recorded for later processing. The computation done on
these frames consisted of counting the number of pix-
els that were present in a certain color range (giving us
the surveyor’s perception of the size of the box), and
the centroid of the pixels of that color. Before each ex-
periment, the color range was calibrated to avoid the
surveyor mistaking other things for its target.

The absolute position of the robot in relation to its
target was calculated by a camera hanging above the
area in which the tests were being performed. The
surveyor was tagged in its center with another unique
color, and the camera was able to observe the position
of the surveyor in relation to the box. This data was
used to reconstruct the path of the robot, which was
fitted across the data taken from the surveyor’s camera
in order to give us an approximation of the surveyor’s
position at each point.

The robot’s vision system extracts the following in-
formation for a given box:

Published by Atlantis Press, © the authors
 3

Figure 2: SRV-1 Blackfin Robot

si - the size of the object in the image plane.

xi - the x coordinate of the object in the image plane

yi - the y coordinate of the object in the image plane

Each object has an objective size s0 and objective loca-
tion (x0,y0,z0), relative to the origin of the coordinate
frame.

In general, if the camera moves in the 3 dimensional
space with translational velocity v = (vx, vy, vz) and
rotational velocity ω = (ωx, ωy, ωz), then the velocity of
a point in the image plane can be expressed as follows:

ẋi = tx + rx

ẏi = ty + ry

where,

tx = (−vx + vzxi)/z0

ty = (−vy + vzyi)/z0

rx = ωxxiyi − ωy(1 + x2
i) + ωzyi

ry = ωx(1 + y2
i)− ωyxiyi − ωzxi

For our robot, the translational velocities vx and vy

and rotational velocities wx and wz are physically con-
strained to be zero. So the equations for ẋi and ẏi are:

ẋi = vzxi/z0 + wy(1 + x2
i) (3)

ẏi = vzyi/z0 + wyxiyi (4)

where vz and wy are constants.

The position of the image plane at each time step is
then given by:

xt+1 = xt + ẋt

yt+1 = yt + ẏt

Note that all the quantities required to predict the next
value of xt+1 and yt+1 are observable except z0,the dis-
tance of the robot from the box.

The perceived size of an object si depends on the
objective size s0 and the distance z0 of the object as
follows:

si = s0/z2
0 (5)

The robot’s perception of the size of the target thus
changes with the distance from the target, though the
target itself is of constant size. The quantities s0 and z0

are not observable, so si cannot be directly estimated.
However, since s0 is constant and our perspective pro-
jection is planar, we have a simpler situation where si

changes only with z0.

Experiments
This section presents the results of using the LO net
architecture to predict future output based on history
with the robot data. A robot collects data by going
back and forth looking at an object. It records the x
and y coordinates of the box and the size of the box
in its vision. The network is trained for 400 epochs
since around that time the MSE converges to a very low
value. The plots show the MSE of the last 150 epochs.
Initially the MSE is very high (around a few hundred)
but it drops rapidly to around 50 in just first 7 or 10
epochs. Figure 3 plots the MSE of variable x. The solid
line shows the performance when the current value of
x (xt) is fed and the the next value of x (xt+1) is pre-
dicted, using only the original network. The dashed line
shows the performance when the current and the previ-
ous two x values (xt, xt−1, xt−2) are fed to the original
network and the next value of x xt+1 is predicted. The
dash-dot line and the dotted lines show the performance
with one and two latent networks respectively. Initially
for the first 100 epochs the current and the previous
two x values (xt, xt−1, xt−2) are fed to the original and
latent networks. The output of the latent networks are
also given as an input to the original network as shown
in figure 1. and the next value of x (xt+1) is predicted.
In the next 100 epochs one history value xt−2 is dropped
from the original network and training is continued. In
the last 200 epochs the original network is fed with only
the current value of x (xt) and the output from the la-
tent network. All the four figures plot the MSE versus
the number of epochs. In the first case there is only
one network and the input is just the current value.
The second case is where there is also just one network
but there are three inputs, the current and two previous
inputs. The third and the fourth case show the results
of the LO net architecture. In the third case there is
one latent network along with the original network. In
the fourth there are two latent networks. The x-axis

Published by Atlantis Press, © the authors
 4

plots the number of iterations and the y-axis plots the
mean square error (MSE) in the following three figures.
In figure 3 the performance of the network with three

Figure 3: Performance curve for X.

Figure 4: Performance curve for Y.

history values can be seen to be better than the per-
formance with just the current value. The one LO net
performs best in this case. It performs better than the
two latent network architecture also. From equation 5
it is clear that there is one value which is unobservable
for the prediction of xt+1 which is the distance of the
robot from the box. While trying to predict the the
next value of x with just the previous value of x one
variable is hidden to x on which it is dependent. The
output from the latent network in the LO net architec-
ture provides input to the original input that improves
its performance. The latent network posits the pres-
ence of a hidden variable. It approximately learns the

value of the hidden variable. Initially three history val-
ues are provided as input to the original network but
with more learning history values are dropped and so
the input from the latent network becomes more impor-
tant. We propose that the backpropagation algorithm
updates the weights of the latent network in such a way
so as to approximate the hidden variable. Similar re-
sults can be seen in the case of predicting yt+1 and st+1.
The one latent network architecture improves the per-
formance of learning in all the three cases. Adding a
second latent network in these cases reduces the perfor-
mance.There are two unobservable values for predicting
the size of the box — the distance of the robot from the
box and the actual size of the box. Since the actual size
is constant the perceived size of the box changes only
when the distance changes. So the latent network comes
up with just one hidden variable in this case.

Figure 5: Performance curve for size.

Figure 6: Performance curve for size with two boxes.

Published by Atlantis Press, © the authors
 5

The next experiments are performed on data where
there are two boxes in the vision of the robot. The ar-
chitecture with two latent networks performs best when
predicting the size of the box as seen in figure 6. The
size of a box depends on the actual size of the box and
the distance of the box from the robot. When there
are two boxes the actual size is no more constant. So
when predicting the next value of the size perceived by
the robot the two hidden variables are the size and the
distance. Adding a third latent network again reduces
the performance of learning.

From these results we conclude that the performance
of prediction of the future values can be improved by
using the LO net architecture. Not only does it esti-
mate the existence of hidden variables but it also gives
an estimate of the number of hidden variables. For ex-
ample xt+1 and yt+1 depend only on one unobservable
variable, so one latent network does a better job than
two latent networks. In the two latent network case the
extra input from the second latent net reduced the per-
formance. While predicting the future values of st+1

with boxes in the robot’s view which depends on two
unobservable variables, two latent nets did a better job
than one. The network architecture was able to predict
two hidden variables.

Figure 7 show the outputs of the latent networks from
the three experiments with one latent network while
trying to predict the next values of x, y and size with
one box in the robot’s vision. All the three latent net-
works try to approximate one variable which is hidden,
the distance of the robot from the box. It can be seen
that the outputs from the latent networks are somewhat
correlated.

Figure 7: Comparison of the output values from the
latent nets.

This neural network architecture can find the exis-
tence of hidden variables. The number of hidden vari-
ables can be found by iteratively adding latent networks
to the original network until adding a new latent net-

work does not significantly help. Our next experiments
will be on large domains to see how this method scales
when the number of hidden variables increases.

Conclusion
We presented a novel neural network architecture that
solves three problems related to theoretical entities:
(1) discovering that they exist, (2) determining their
number, and (3) computing their values. Experiments
showed the utility of the proposed approach using a dis-
crete time dynamical system in which some of the state
variables are hidden, and sensor data obtained from the
camera of a mobile robot in which the sizes and loca-
tions of objects in the visual field are observed but their
sizes and locations (distances) in the three-dimensional
world are not.

Acknowledgement
We would like to thank Max Morawski for running the
experiments with the robot and providing the experi-
mental data.

References
Bollen, K. A. 2002. Latent variables in psychology

and the social sciences. Annual Review of Psychology
53(1):605–634.

Elidan, G.; Lotner, N.; Friedman, N.; and Koller, D.
2000. Discovering hidden variables: A structure-
based approach. In NIPS, 479–485.

Holmes, M. P., and Isbell, Jr., C. L. 2006. Looping suf-
fix tree-based inference of partially observable hidden
state. In ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, 409–416. New
York, NY, USA: ACM.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1996. Planning and acting in partially observable
stochastic domains. Technical Report CS-96-08.

Littman, M.; Sutton, R.; and Singh, S. 2001. Predictive
representations of state.

McCallum, A. 1996. Hidden state and reinforcement
learning with instance-based state identification.

Rivest, R. L., and Schapire, R. E. 1994. Diversity-based
inference of finite automata.

Takens, F. 1981. Detecting strange attractors in tur-
bulence. Lecture Notes in Mathematics 366–381.

Published by Atlantis Press, © the authors
 6

