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Compression in the program space is of high impor-
tance in Artificial General Intelligence [Sol64, Hut07].
Since maximal data compression in the general sense
is not possible to achieve [Sol64], it is necessary to use
approximate algorithms, like AIXT, ; [Hut07].

This paper introduces a system that is able to com-
press data locally and iteratively, in a relational descrip-
tion language. The system thus belongs to the any-
time algorithm family: the more time spent, the better
it performs. The locality property is also well-suited
for AGI agents to allow them to focus on ”interesting”
parts of the data.

The system presented here is to be opposed to blind
generate and test approaches (e.g., [Sch04, Lev73]). On
the contrary to the latter, it uses information gathered
about the input data to guide compression. It can be
described as a forward chaining! expert system on rela-
tional descriptions of input data, while looking for the
most compressed representation of the data.

It is composed of a description/programming lan-
guage, to describe facts (and a set of weights associated
with each primitive of the language), local search oper-
ators, to infer new facts, and an algorithm to search for
compressed global description.

The relation operators and the search operators are
domain-specific. Examples in the letter-string domain
are given in the Ezperiments section. Due to lack of
space, only a overview of the whole system can be given.

Description Language

The main point of this paper is to deal with local com-
pression. This means that the system should be able to
focus on any part of the input data, without affecting
the rest of the data.

A relational language for data representa-
tion/programming is well suited for this purpose,
exactly because everything (including spatial and
dynamical dependencies) can be described in terms of
local relations between data parts.

The language has values (numbers, characters, opera-
tors names, ...) and relations between objects (instan-

!There can be no backward chaining, because no goal
description is given.

tiations of operators on objects). What kinds of objects
and operators are used depends on the domain. For an
AGI, it depends on the sensors it uses, but the set of
operators should form a Turing-complete language.

The initial description of the world (the input data)
is the initial facts of the expert system.

Search Operators

The inference rules of the expert systems are called
the search operators. A search operator takes inputs,
tests them against a precondition, and when the test
is passed produces outputs that are added to the fact
database. The set of search operators is domain-
dependent.

The exact inputs/outputs mapping is also memorized
to construct a graph for the compression part of the
algorithm.

The constraint imposed on search operators is that
they must not lose information, i.e. that knowledge of
the outputs is sufficient to reconstruct the inputs.

Algorithm
The algorithm runs like this:

1. The input data is given to the system in a simple
uncompressed relational representation.

2. Each local search operator is tested in turn to create
new local descriptions when possible.

3. Local descriptions are composed to create global de-
scriptions.

4. The description (space) costs of the global descrip-
tions are computed.

5. The less costly global description is retained.

6. Stop when a given criterion (on time, space, error,
..) is satisfied, or go back to step 2.

Finding the best current description is based on
the Minimum Description Length principle [GMPO05],
where the cost of a description is simply the sum of the
costs of each relation used. The cost of a relation is
domain specific, and defined by the user.
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Lossless Compression Sketch Proof

Search operators consume inputs and provide outputs
(new local descriptions). If each such operator has the
property that it does not lose information, i.e. that
its inputs can be rebuilt from the outputs, then the
global algorithm ensures that no information is lost for
global descriptions. The only difficulty resides in cyclic
dependencies between local descriptions, e.g. when a
local description A depends on the local description B
and vice-versa. To avoid such cycles, a dependency di-
rected graph of input-output mappings created by the
search operators is constructed, and any cycle is bro-
ken. The final description is composed of the relations
that are on the terminal nodes of the graph. So some
inputs that should have been consumed can appear in
the final description because they are needed to avoid
a cycle.

Experiments

The system has been tested in the letter-string domain
on a set of small strings that show that compression is
indeed iterative.

In the letter-string domain, the world is initially de-
scribed using the following relations:
obj: binds values that describe one same ”object”,
character, of the world (the string),
val: character value a, b, ¢ ...
pos: position of the object in the string,

Once compression has begun, some of the following re-
lations may be used:

neighbor: two objects are neighbors,

succ, pred: two values follow one another in lexico-
graphical order

eq: two values are identical,

plus relations to describe sequences (with a initial value,
a length and a succession relation) and sequences of se-
quences.

The letter-string domain search operators have sim-
ilar names to the description relations. For example,
the eq search operator searches the fact database for
identical values. When it finds one, it creates a new
fact using the eq relation binding the two values and
adds it to the database. The seqV search operator
searches for two objects that are neighbors and have
a relation on their values and creates a new sequence
of two objects, whereas seqG tries to merge two exist-
ing neighbor sequences that have identical succession
operators.

For example, the initial string abcxxxxdefyyyy has
a cost of 28 (given a fixed set of costs for the letter-
string domain). After one pass on the loop of the al-
gorithm, the system compresses it to a cost of 24.9,
finding local relations like neighbor and eq. On the
next loop step, it finds other relations like small se-
quences but they do not build a less costly descrip-
tion. On the next steps, the sequences grow, lower-
ing the best description cost to 18.8, then 17.6 and
finally 14.3, where the string has been ”understood”

as (abc) (xxxx) (def) (yyyy) with succ relations between
interleaving sequences and neighbor relations between
adjacent sequences.

The system also compresses non-obvious strings like
abccdedefg, on which it lowers the initial cost of 20
to 8.3 with 7 intermediate values, finally finding the
compressed representation of the sequence of sequences
((a) (be) (cde) (defg)).

Limitations, Perspectives and
Conclusion

For the experiments in the letter-string domain, a few
seconds are sufficient to find a much compressed de-
scription, but lengthening the initial strings leads to
a huge combinatorial explosion. To limit the impact
of such explosion, the first solution is to add ad-hoc
domain-specific search operators that focus on specific
”interesting” patterns in the database and are given
high priority. It is also possible to add a learning strat-
egy, for example inspired by Explanation Based Learn-
ing [DM86], since compressing is equivalent to proving.
Learning would lead, with an AGI approach, to Incre-
mental Learning (e.g. [Sch04]), using acquired knowl-
edge to solve related problems faster. Learning could
then also be used to incrementally tune the initial costs
of the relation operators like eq.

The language used for the experiments can represent
complex non-linear worlds, but the language should be
augmented to Turing-completeness since for an AGI
this seems to be unavoidable.

Relational local iterative compression is a novel ap-
proach to compression in the program space and could
be used for many different tasks, e.g. visual scene (2D,
3D) compression/comprehension, amongst others. It
may be mostly beneficial when prior domain knowledge
can be used or acquired.
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