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Abstract

The construction of an artificial scientist, a machine
that discovers and describes the general rules govern-
ing a variety of complex environments, can be consid-
ered an important challenge for artificial general in-
telligence. Recently, a computational framework for
scientific investigation has been postulated in the the-
ory of compression-driven progress. Here, I propose
an implementation of an artificial scientist based on
the compression principle, and explore the possibilities
and challenges for its application in scientific research.

Introduction
Human beings reckon scientific understanding of the
world among the most powerful of their abilities (e.g.
Rorty, 1991), and it is therefore not surprising that re-
searchers try to simulate this capability with computer
programs and robots (e.g. King et al., 2009; Schmidt
and Lipson, 2009). Such machines, called artificial sci-
entists, not only enhance our ability to carry out sci-
entific research, but building them also guides our un-
derstanding how human scientists come to comprehend
the world. Creating an artificial scientist that is not
restricted to a specific domain, but performs scientific
research in general can be considered a great challenge
for artificial general intelligence.

To construct an artificial scientist, we need to have
some idea of what it is that human scientists do and
how they do this. Since the societal, fundamental or
personal goals of science are not contained in its do-
main, I here rather define the activity of scientists as
the development of theories that explain the past and
predict the future, and are consistent with other the-
ories. These theories result from systematic reasoning
about observations, whether obtained accidentally or
intentionally, for example in a controlled experiment.

A theory that not only explains how scientific
progress is achieved by human beings, but also specifies
how scientific investigation can be carried out with com-
puter algorithms, is the theory of compression-driven
progress (Schmidhuber, 2009). This theory considers
both human and artificial scientists as computationally
limited observers that try to represent observations in
an efficient manner. Finding efficient representations

entails identifying regularities that allow the observer
to compress the original observations and predict future
observations. Discovered regularities then serve as an
explanation for the observed phenomena. Compression
progress is achieved when an observer discovers previ-
ously unknown regularities that provide increased com-
pression of observations. The theory of compression-
driven progress further postulates that scientists direct
their attention to interesting data, that is, data that
is neither impossible to compress (i.e. truly random)
nor easily compressible with existing methods, but is
expected to hold previously unknown regularities that
allow for further compression.

Based on this theory, it is possible to implement an
artificial scientist that can operate in a variety of scien-
tific disciplines. In this paper I explore the possibilities
and challenges for the construction of a compression-
driven artificial scientist.

Compression-Driven Artificial Scientists
A compression-driven artificial scientist is a machine
that aims to predict future and unobserved observations
by identifying the regularities underlying its sensory in-
put. It consists of the following components: (1) A
sensory input module that collects observations, such
as a camera, microphone or software interface. (2) An
adaptive compressor that discovers regularities in the
observational data. A compressor that is particularly
suitable for this task is the deep autoencoder of Hin-
ton and Salakhutdinov (2006), which learns to convert
high-dimensional input data to short codes. Of course
it is possible to use another, possibly even more general
algorithm, but the Hinton and Salakhutdinov autoen-
coder has the advantage that it can reconstruct and thus
predict data from its coded representations. (3) A re-
inforcement learning algorithm that learns to select ac-
tions (e.g. manipulate the world, perform experiments,
direct attention, move) that take the artificial scientist
to interesting data. Interestingness is defined as the im-
provement of the adaptive compressor on parts of the
input data, and is determined from the number of bits
needed to reconstruct the original input from its coded
representation. (4) Optionally, a physical implemen-
tation, such as a robot. The use of existing datasets,

Published by Atlantis Press, © the authors 
                              1



however, allows for the implementation of the artificial
scientist as a software program, which can significantly
reduce the costs and complexity of its construction.

Representation

The compression-driven artificial scientist is not imme-
diately useful to its human colleagues, because the reg-
ularities it discovers are not represented in understand-
able form (i.e. in a connectionist architecture). A re-
lated problem is that the artificial scientist has no a-
priori notion of objects1 in its raw sensory inputs (e.g.
a stream of bits or numbers), while its theories should
preferably be about such objects, not about bits or
numbers. These two problems reflect the more general
challenge of constructing symbolic representations from
subsymbolic data (see e.g. Smolensky, 1988). Here I ex-
plain how both artificial and human scientists construct
mental objects from sensory inputs using the compres-
sion principle, and how this process is the basis for com-
municating discovered regularities in symbolic form.

Using the basic operations of its reasoning appara-
tus, the artificial scientist builds methods that compress
those parts of its sensory input signal that have certain
structure. Note that compression does not merely apply
to static objects in space, but also extends to structural
relations in time. Different types of structure require
different compression methods, allowing the artificial
scientist to distinguish individual entities or phenom-
ena by their method of compression. When compression
methods are organized in a hierarchical fashion, the ar-
tificial scientist can construct more abstract concepts
and find increasingly general relations between objects
on different abstraction levels.

Human scientists discovered many parts of the world
that are compressible and predictable to some extent,
while other parts seem to resist compression and predic-
tion. Interestingly, the inability to describe and predict
certain parts of the world is mostly not because the
fundamental forces of nature are unknown to science,
but because the deterministic laws of nature produce
chaos in some parts and order in other parts of the
world (where chaos and order are equivalent to incom-
pressible and compressible observations, respectively).
That is, the most fundamental relations express only
the most general aspects of the world, not all specific
details relevant to our lives. Human scientists there-
fore try to find intermediate levels on which the world
exhibits regularity, give those parts names and relate
them in a systematic way to already identified entities.
As a result, different levels of organization materialize
into individual objects1 of scientific thought.

Discovered structure in parts of the world can only be
communicated in a meaningful sense through a shared
language. While mathematics and logic are rather pop-

1objects in the most general sense, such as material ob-
jects like molecules and robots, but also more abstract ob-
jects like a rainbow, a supercluster (of galaxies) or musical
notes

ular languages in science, the relations they express
have no intrinsic meaning, but need to be related to
concepts that are recognized by all communicating par-
ties (e.g. Schmidt and Lipson (2009) used symbolic re-
gression on variables whose human interpretation was
established beforehand, not discovered independently
by their algorithms). Artificial scientists therefore need
to learn how to map their internal representations of
discovered objects and structure onto the entities (e.g.
symbols) of a shared language. Such a shared language
can, in principle, be learned among different instances
of artificial scientists in an unsupervised fashion. How-
ever, this artificial language is probably not easily acces-
sible to human scientists. Instead, an artificial scientist
should learn a language that is easily understandable
for human scientists. For this, the artificial scientist
needs to learn from labeled data, either by augmenting
the reinforcement learning algorithm with an external
reward based on label prediction, or by a function (e.g.
an additional neural network) that learns to map inter-
nal representations onto labels in a supervised fashion.

Conclusion
In this paper I explored the possibilities and chal-
lenges for the construction of a compression-driven arti-
ficial scientist. While the theory of compression-driven
progress provides the basic mechanism for scientific in-
vestigation, an ongoing challenge is the human inter-
pretation of theories constructed by artificial scientists.
In the future I aim to implement the proposed architec-
ture and demonstrate its capability to discover known
and novel forms of structure in scientific data.
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