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Abstract

Two new formal definitions of intelligence are pre-
sented, the ”pragmatic general intelligence” and ”effi-
cient pragmatic general intelligence.” Largely inspired
by Legg and Hutter’s formal definition of ”universal
intelligence,” the goal of these definitions is to cap-
ture a notion of general intelligence that more closely
models that possessed by humans and practical AI sys-
tems, which combine an element of universality with a
certain degree of specialization to particular environ-
ments and goals. Pragmatic general intelligence mea-
sures the capability of an agent to achieve goals in envi-
ronments, relative to prior distributions over goal and
environment space. Efficient pragmatic general intelli-
gences measures this same capability, but normalized
by the amount of computational resources utilized in
the course of the goal-achievement. A methodology
is described for estimating these theoretical quantities
based on observations of a real biological or artificial
system operating in a real environment. Finally, a mea-
sure of the ”degree of generality” of an intelligent sys-
tem is presented, allowing a rigorous distinction be-
tween ”general AI” and ”narrow AI.”

Introduction
”Intelligence” is a commonsense, ”folk psychology” con-
cept, with all the imprecision and contextuality that
this entails. One cannot expect any compact, elegant
formalism to capture all of its meanings. Even in the
psychology and AI research communities, divergent def-
initions abound; Legg and Hutter (LH07a) lists and or-
ganizes 70+ definitions from the literature.

Practical study of natural intelligence in humans and
other organisms, and practical design, creation and in-
struction of artificial intelligences, can proceed perfectly
well without an agreed-upon formalization of the ”intel-
ligence” concept. Some researchers may conceive their
own formalisms to guide their own work, others may
feel no need for any such thing.

But nevertheless, it is of interest to seek formaliza-
tions of the concept of intelligence, which capture useful
fragments of the commonsense notion of intelligence,
and provide guidance for practical research in cogni-
tive science and AI. A number of such formalizations
have been given in recent decades, with varying degrees

of mathematical rigor. Perhaps the most carefully-
wrought formalization of intelligence so far is the theory
of ”universal intelligence” presented by Shane Legg and
Marcus Hutter in (LH07b), which draws on ideas from
algorithmic information theory.

Universal intelligence captures a certain aspect of the
”intelligence” concept very well, and has the advantage
of connecting closely with ideas in learning theory, de-
cision theory and computation theory. However, the
kind of general intelligence it captures best, is a kind
which is in a sense more general in scope than human-
style general intelligence. Universal intelligence does
capture the sense in which humans are more intelligent
than worms, which are more intelligent than rocks; and
the sense in which theoretical AGI systems like Hutter’s
AIXI or AIXItl (Hut05) would be much more intelli-
gent than humans. But it misses essential aspects of
the intelligence concept as it is used in the context of
intelligent natural systems like humans or real-world AI
systems.

Our main goal here is to present variants of univer-
sal intelligence that better capture the notion of intel-
ligence as it is typically understood in the context of
real-world natural and artificial systems. The first vari-
ant we describe is pragmatic general intelligence, which
is inspired by the intuitive notion of intelligence as ”the
ability to achieve complex goals in complex environ-
ments,” given in (Goe93). After assuming a prior dis-
tribution over the space of possible environments, and
one over the space of possible goals, one then defines the
pragmatic general intelligence as the expected level of
goal-achievement of a system relative to these distribu-
tions. Rather than measuring truly broad mathemat-
ical general intelligence, pragmatic general intelligence
measures intelligence in a way that’s specifically biased
toward certain environments and goals.

Another variant definition is then presented, the ef-
ficient pragmatic general intelligence, which takes into
account the amount of computational resources utilized
by the system in achieving its intelligence. Some ar-
gue that making efficient use of available resources is a
defining characteristic of intelligence, see e.g. (Wan06).

A critical question left open is the characterization
of the prior distributions corresponding to everyday hu-
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man reality; we have given a semi-formal sketch of some
ideas on this in a prior conference paper (Goe09), where
we present the notion of a ”communication prior,”
which assigns a probability weight to a situation S
based on the ease with which one agent in a society
can communicate S to another agent in that society,
using multimodal communication (including verbaliza-
tion, demonstration, dramatic and pictorial depiction,
etc.). We plan to develop this and related notions fur-
ther.

Finally, we present a formal measure of the ”gener-
ality” of an intelligence, which precisiates the informal
distinction between ”general AI” and ”narrow AI.”

Legg and Hutter’s Definition of General
Intelligence

First we review the definition of general intelligence
given in (LH07b), as the formal setting they provide
will also serve as the basis for our work here.

We consider a class of active agents which observe
and explore their environment and also take actions in
it, which may affect the environment. Formally, the
agent sends information to the environment by send-
ing symbols from some finite alphabet called the action
space Σ; and the environment sends signals to the agent
with symbols from an alphabet called the perception
space, denoted P. Agents can also experience rewards,
which lie in the reward space, denotedR, which for each
agent is a subset of the rational unit interval.

The agent and environment are understood to take
turns sending signals back and forth, yielding a history
of actions, observations and rewards, which may be de-
noted

a1o1r1a2o2r2...

or else

a1x1a2x2...

if x is introduced as a single symbol to denote both
an observation and a reward. The complete interaction
history up to and including cycle t is denoted ax1:t; and
the history before cycle t is denoted ax<t = ax1:t−1.

The agent is represented as a function π = which
takes the current history as input, and produces an ac-
tion as output. Agents need not be deterministic, an
agent may for instance induce a probability distribution
over the space of possible actions, conditioned on the
current history. In this case we may characterize the
agent by a probability distribution π(at|ax<t). Simi-
larly, the environment may be characterized by a prob-
ability distribution µ(xk|ax<kak). Taken together, the
distributions π and µ define a probability measure over
the space of interaction sequences.

To define universal intelligence, Legg and Hutter
consider the class of environments that are reward-
summable, meaning that the total amount of reward
they return to any agent is bounded by 1. Where ri
denotes the reward experienced by the agent from the

environment at time i, the expected total reward for the
agent π from the environment µ is defined as

V πµ ≡ E(
∞∑
1

ri) ≤ 1

To extend their definition in the direction of greater
realism, we first introduce a second-order probability
distribution ν, which is a probability distribution over
the space of environments µ. The distribution ν as-
signs each environment a probability. One such dis-
tribution ν is the Solomonoff-Levin universal distribu-
tion in which one sets ν = 2−K(µ); but this is not the
only distribution ν of interest. In fact a great deal of
real-world general intelligence consists of the adapta-
tion of intelligent systems to particular distributions
ν over environment-space, differing from the universal
distribution. We then define
Definition 1. The biased universal intelligence
of an agent π is its expected performance with respect
to the distribution ν over the space of all computable
reward-summable environments, E, that is,

Υ(π) ≡
∑
µ∈E

ν(µ)V πµ

Legg and Hutter’s universal intelligence is obtained
by setting ν equal to the universal distribution.

This framework is more flexible than it might seem.
E.g. suppose one wants to incorporate agents that die.
Then one may create a special action, say a666, corre-
sponding to the state of death, to create agents that

• in certain circumstances output action a666

• have the property that if their previous action was
a666, then all of their subsequent actions must be
a666

and to define a reward structure so that actions a666

always bring zero reward. It then follows that death
is generally a bad thing if one wants to maximize in-
telligence. Agents that die will not get rewarded after
they’re dead; and agents that live only 70 years, say, will
be restricted from getting rewards involving long-term
patterns and will hence have specific limits on their in-
telligence.

Connecting Legg and Hutter’s Model of Intelli-
gent Agents to the Real World A notable aspect
of the Legg and Hutter formalism is the separation of
the reward mechanism from the cognitive mechanisms
of the agent. While commonplace in the reinforcement
learning literature, this seems psychologically unrealis-
tic in the context of biological intelligences and many
types of machine intelligences. Not all human intel-
ligent activity is specifically reward-seeking in nature;
and even when it is, humans often pursue complexly
constructed rewards, that are defined in terms of their
own cognitions rather than separately given. Suppose
a certain human’s goals are true love, or world peace,
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and the proving of interesting theorems – then these
goals are defined by the human herself, and only she
knows if she’s achieved them. An externally-provided
reward signal doesn’t capture the nature of this kind
of goal-seeking behavior, which characterizes much hu-
man goal-seeking activity (and will presumably char-
acterize much of the goal-seeking activity of advanced
engineered intelligences also) ... let alone human behav-
ior that is spontaneous and unrelated to explicit goals,
yet may still appear commonsensically intelligent.

One could seek to bypass this complaint about the
reward mechanisms via a sort of ”neo-Freudian” argu-
ment, via

• associating the reward signal, not with the ”exter-
nal environment” as typically conceived, but rather
with a portion of the intelligent agent’s brain that is
separate from the cognitive component

• viewing complex goals like true love, world peace
and proving interesting theorems as indirect ways of
achieving the agent’s ”basic goals”, created within
the agent’s memory via subgoaling mechanisms

but it seems to us that a general formalization of intelli-
gence should not rely on such strong assumptions about
agents’ cognitive architectures. So below, after intro-
ducing the pragmatic and efficient pragmatic general
intelligence measures, we will propose an alternate in-
terpretation wherein the mechanism of external rewards
is viewed as a theoretical test framework for assessing
agent intelligence, rather than a hypothesis about in-
telligent agent architecture.

In this alternate interpretation, formal measures like
the universal, pragmatic and efficient pragmatic gen-
eral intelligence are viewed as not being directly appli-
cable to real-world intelligences, because they involve
the behaviors of agents over a wide variety of goals and
environments, whereas in real life the opportunity to
observe an agent’s activities are much more limited.
However, they are viewed as being indirectly applica-
ble to real-world agents, in the sense that an external
intelligence can observe an agent’s real-world behavior
and then infer its likely intelligence according to these
measures.

In a sense, this interpretation makes our formalized
measures of intelligence the opposite of real-world IQ
tests. An IQ test is a quantified, formalized test which
is designed to approximately predict the informal, qual-
itative achievement of humans in real life. On the other
hand, the formal definitions of intelligence we present
here are quantified, formalized tests that are designed
to capture abstract notions of intelligence, but which
can be approximately evaluated on a real-world intelli-
gent system by observing what it does in real life.

Pragmatic General Intelligence

To formalize pragmatic general intelligence, the first
modification we need to introduce to Legg and Hutter’s
framework is to allow agents to maintain memories (of

finite size), and at each time step to carry out internal
actions on their memories as well as external actions
in the environment. Legg and Hutter, in their the-
ory of universal intelligence, don’t need to worry about
memory, because their definition of intelligence doesn’t
take into account the computational resource usage of
agents. Thus, in their framework, it’s acceptable for
an agent to determine its actions based on the entire
past history of perceptions, actions and rewards. On
the other hand, if an agent needs to conserve memory
and/or memory access time, it may not be practical for
it to store its entire history, so it may need to store
a sample thereof, and/or a set of memory items rep-
resenting useful abstractions of its history. If one is
gauging intelligence using a measure that incorporates
space and time resource utilization, then the size and
organization of this memory become important aspects
of the system’s intelligence.

Further extending the Legg and Hutter framework,
we introduce the notion of a goal-seeking agent. We de-
fine goals as mathematical functions (to be specified be-
low) associated with symbols drawn from the alphabet
G; and we consider the environment as sending goal-
symbols to the agent along with regular observation-
symbols. (Note however that the presentation of a goal-
symbol to an agent does not necessarily entail the ex-
plicit communication to the agent of the contents of the
goal function. This must be provided by other, corre-
lated observations.) We also introduce a conditional
distribution γ(g, µ) that gives the weight of a goal g in
the context of a particular environment µ.

In this extended framework, an interaction sequence
looks like

m1a1o1g1r1m2a2o2g2r2...

or else

w1y1w2y2...

if w is introduced as a single symbol to denote the com-
bination of a memory action and an external action,
and y is introduced as a single symbol to denote the
combination of an observation, a reward and a goal.

Each goal function maps each finite interaction se-
quence Ig,s,t = ays:t with gs corresponding to g, into
a value rg(Ig,s,t) ∈ [0, 1] indicating the value or “raw
reward” of achieving the goal during that interaction
sequence. The total reward rt obtained by the agent is
the sum of the raw rewards obtained at time t from all
goals whose symbols occur in the agent’s history before
t. We will use “context” to denote the combination of
an environment, a goal function and a reward function.

If the agent is acting in environment µ, and is pro-
vided with gs corresponding to g at the start of the
time-interval T = {i ∈ (s, ..., t)}, then the expected
goal-achievement of the agent, relative to g, during the
interval is the expectation
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V πµ,g,T ≡ E(
t∑
i=s

rg(Ig,s,i))

where the expectation is taken over all interaction se-
quences Ig,s,i drawn according to µ. We then propose

Definition 2. The pragmatic general intelligence
of an agent π, relative to the distribution ν over envi-
ronments and the distribution γ over goals, is its ex-
pected performance with respect to goals drawn from γ
in environments drawn from ν; that is,

Π(π) ≡
∑

µ∈E,g∈G,T
ν(µ)γ(g, µ)V πµ,g,T

(in those cases where this sum is convergent).

This definition formally captures the notion that ”intel-
ligence is achieving complex goals in complex environ-
ments,” where ”complexity” is gauged by the assumed
measures ν and γ.

If ν is taken to be the universal distribution, and γ is
defined to weight goals according to the universal dis-
tribution, then pragmatic general intelligence reduces
to universal intelligence.

Furthermore, it is clear that a universal algorithmic
agent like AIXI (Hut05) would also have a high prag-
matic general intelligence, under fairly broad condi-
tions. As the interaction history grows longer, the prag-
matic general intelligence of AIXI would approach the
theoretical maximum; as AIXI would implicitly infer
the relevant distributions via experience. However, if
significant reward discounting is involved, so that near-
term rewards are weighted much higher than long-term
rewards, then AIXI might compare very unfavorably in
pragmatic general intelligence, to other agents designed
with prior knowledge of ν and γ in mind.

The most interesting case to consider is where ν and
γ are taken to embody some particular bias in a real-
world space of environments and goals, and this biases
is appropriately reflected in the internal structure of an
intelligent agent. Note that an agent need not lack uni-
versal intelligence in order to possess pragmatic general
intelligence with respect to some non-universal distri-
bution over goals and environments. However, in gen-
eral, given limited resources, there may be a tradeoff be-
tween universal intelligence and pragmatic intelligence.
Which leads to the next point: how to encompass re-
source limitations into the definition.

One might argue that the definition of Pragmatic
General Intelligence is already encompassed by Legg
and Hutter’s definition because one may bias the distri-
bution of environments within the latter by considering
different Turing machines underlying the Kolmogorov
complexity. However this is not a general equivalence
because the Solomonoff-Levin measure intrinsically de-
cays exponentially, whereas an assumptive distribution
over environments might decay at some other rate. This
issue seems to merit further mathematical investigation.

Incorporating Computational Cost
Let ηπ,µ,g,T be a probability distribution describing
the amount of computational resources consumed by
an agent π while achieving goal g over time-scale T .
This is a probability distribution because we want to
account for the possibility of nondeterministic agents.
So, ηπ,µ,g,T (Q) tells the probability that Q units of re-
sources are consumed. For simplicity we amalgamate
space and time resources, energetic resources, etc. into
a single number Q, which is assumed to live in some
subset of the positive reals. Space resources of course
have to do with the size of the system’s memory, briefly
discussed above. Then we may define

Definition 3. The efficient pragmatic general in-
telligence of an agent π with resource consumption
ηπ,µ,g,T , relative to the distribution ν over environments
and the distribution γ over goals, is its expected per-
formance with respect to goals drawn from γ in envi-
ronments drawn from ν, normalized by the amount of
computational effort expended to achieve each goal; that
is,

ΠEff (π) ≡
∑

µ∈E,g∈G,Q,T

ν(µ)γ(g, µ)ηπ,µ,g,T (Q)
Q

V πµ,g,T

(in those cases where this sum is convergent).

Efficient pragmatic general intelligence is a measure
that rates an agent’s intelligence higher if it uses fewer
computational resources to do its business.

Note that, by abandoning the universal prior, we have
also abandoned the proof of convergence that comes
with it. In general the sums in the above definitions
need not converge; and exploration of the conditions
under which they do converge is a complex matter.

Assessing the Intelligence of Real-World
Agents

The pragmatic and efficient pragmatic general intelli-
gence measures are more ”realistic” than the Legg and
Hutter universal intelligence measure, in that they take
into account the innate biasing and computational re-
source restrictions that characterize real-world intel-
ligence. But as discussed earlier, they still live in
”fantasy-land” to an extent – they gauge the intelli-
gence of an agent via a weighted average over a wide
variety of goals and environments; and they presume a
simplistic relationship between agents and rewards that
does not reflect the complexities of real-world cognitive
architectures. It is not obvious from the foregoing how
to apply these measures to real-world intelligent sys-
tems, which lack the ability to exist in such a wide va-
riety of environments within their often brief lifespans,
and mostly go about their lives doing things other than
pursuing quantified external rewards. In this brief sec-
tion we describe an approach to bridging this gap. The
treatment is left-semi-formal in places.
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We suggest to view the definitions of pragmatic and
efficient pragmatic general intelligence in terms of a
”possible worlds” semantics – i.e. to view them as ask-
ing, counterfactually, how an agent would perform, hy-
pothetically, on a series of tests (the tests being goals,
defined in relation to environments and reward signals).

Real-world intelligent agents don’t normally operate
in terms of explicit goals and rewards; these are ab-
stractions that we use to think about intelligent agents.
However, this is no objection to characterizing various
sorts of intelligence in terms of counterfactuals like: how
would system S operate if it were trying to achieve this
or that goal, in this or that environment, in order to
seek reward? We can characterize various sorts of in-
telligence in terms of how it can be inferred an agent
would perform on certain tests, even though the agent’s
real life does not consist of taking these tests.

This conceptual approach may seem a bit artificial,
but, we don’t currently see a better alternative, if one
wishes to quantitatively gauge intelligence (which is, in
a sense, an ”artificial” thing to do in the first place).
Given a real-world agent X and a mandate to assess
its intelligence, the obvious alternative to looking at
possible worlds in the manner of the above definitions,
is just looking directly at the properties of the things
X has achieved in the real world during its lifespan.
But this isn’t an easy solution, because it doesn’t dis-
ambiguate which aspects of X’s achievements were due
to its own actions versus due to the rest of the world
that X was interacting with when it made its achieve-
ments. To distinguish the amount of achievement that
X ”caused” via its own actions requires a model of
causality, which is a complex can of worms in itself;
and, critically, the standard models of causality also in-
volve counterfactuals (asking ”what would have been
achieved in this situation if the agent X hadn’t been
there”, etc.) (MW07). Regardless of the particulars,
it seems impossible to avoid counterfactual realities in
assessing intelligence.

The approach we suggest – given a real-world agent
X with a history of actions in a particular world, and
a mandate to assess its intelligence – is to introduce
an additional player, an inference agent δ, into the pic-
ture. The agent π modeled above is then viewed as
πX : the model of X that δ constructs, in order to ex-
plore X’s inferred behaviors in various counterfactual
environments. In the test situations embodied in the
definitions of pragmatic and efficient pragmatic general
intelligence, the environment gives πX rewards, based
on specifically configured goals. In X’s real life, the re-
lation between goals, rewards and actions will generally
be significantly subtler and perhaps quite different.

We model the real world similarly to the ”fantasy
world” of the previous section, but with the omission
of goals and rewards. We define a naturalistic context
as one in which all goals and rewards are constant, i.e.
gi = g0 and ri = r0 for all i. This is just a mathemat-
ical convention for stating that there are no precisely-
defined external goals and rewards for the agent. In

a naturalistic context, we then have a situation where
agents create actions based on the past history of ac-
tions and perceptions, and if there is any relevant notion
of reward or goal, it is within the cognitive mechanism
of some agent. A naturalistic agent X is then an agent
π which is restricted to one particular naturalistic con-
text, involving one particular environment µ (formally,
we may achieve this within the framework of agents de-
scribe above via dictating that X issues constant ”null
actions” a0 in all environments except µ).

Next, we posit a metric space (Σµ, d) of naturalistic
agents defined on a naturalistic context involving envi-
ronment µ, and a subspace ∆ ∈ Σµ of inference agents,
which are naturalistic agents that output predictions
of other agents’ behaviors (a notion we will not fully
formalize here). If agents are represented as program
trees, then d may be taken as edit distance on tree space
(Bil05). Then, for each agent δ ∈ ∆, we may assess
• the prior probability θ(δ) according to some assumed

distribution θ

• the effectiveness p(δ,X) of δ at predicting the actions
of an agent X ∈ Σµ
We may then define

Definition 4. The inference ability of the agent δ,
relative to µ and X, is

qµ,X(δ) = θ(δ)

∑
Y ∈Σµ

sim(X,Y )p(δ, Y )∑
Y ∈Σµ

sim(X,Y )

where sim is a specified decreasing function of d(X,Y ),
such as sim(X,Y ) = 1

1+d(X,Y ) .

To construct πX , we may then use the model of X
created by the agent δ ∈ ∆ with the highest inference
ability relative to µ and X (using some specified order-
ing, in case of a tie). Having constructed πX , we can
then say that
Definition 5. The inferred pragmatic general intelli-
gence (relative to ν and γ) of a naturalistic agent X
defined relative to an environment µ, is defined as the
pragmatic general intelligence of the model πX of X
produced by the agent δ ∈ ∆ with maximal inference
ability relative to µ (and in the case of a tie, the first
of these in the ordering defined over ∆). The inferred
efficient pragmatic general intelligence of X relative to
µ is defined similarly.

This provides a precise characterization of the prag-
matic and efficient pragmatic intelligence of real-world
systems, based on their observed behaviors. It’s a bit
messy; but the real world tends to be like that.

Intellectual Breadth: Quantifying the
Generality of an Agent’s Intelligence

We turn finally to a related question: How can one
quantify the degree of generality that an intelligent
agent possesses? There has been much qualitative dis-
cussion of ”General AI” or ”Artificial General Intelli-
gence,” versus ”Narrow AI” (GP05), and intelligence
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as we have formalized it here is specifically a variety of
general intelligence, but we have not yet tried to quan-
tify the notion of generality versus narrowness.

Given a triple (µ, g, T ), and a set Σ of agents, one may
construct a fuzzy set Agµ,g,T gathering those agents
that are intelligent relative to the triple ; and given a
set of triples, one may also also define a fuzzy set Conπ
gathering those triples with respect to which a given
agent π is intelligent. The relevant formulas are:

χAgµ,g,T (π) = χConπ (µ, g, T ) =
∑
Q

ηµ,g,T (Q)V πµ,g,T
Q

One could make similar definitions leaving out the com-
putational cost factor Q, but we suspect that incorpo-
rating Q is a more promising direction. We then pro-
pose
Definition 6. The intellectual breadth of an agent
π, relative to the distribution ν over environments and
the distribution γ over goals, is

H(χPConπ (µ, g, T ))
where H is the entropy and

χPConπ (µ, g, T ) =

ν(µ)γ(g, µ)χConπ (µ, g, T )∑
(µ′,g′,T ′) ν(µα)γ(g′, µ′)χConπ (µ′, g′, T ′)

is the probability distribution formed by normalizing the
fuzzy set χConπ ((µ, g.T )).

A similar definition of the intellectual breadth of a
context (µ, g, T ), relative to the distribution σ over
agents, may be posited. A weakness of these defini-
tions is that they don’t try to account for dependencies
between agents or contexts; perhaps more refined for-
mulations may be developed that account explicitly for
these dependencies.

Note that the intellectual breadth of an agent as de-
fined here is largely independent of the (efficient or not)
pragmatic general intelligence of that agent. One could
have a rather (efficiently or not) pragmatically gener-
ally intelligent system with little breadth: this would
be a system very good at solving a fair number of hard
problems, yet wholly incompetent on a larger number
of hard problems. On the other hand, one could also
have a terribly (efficiently or not) pragmatically gener-
ally stupid system with great intellectual breadth: this
would be a system that was roughly equally dumb in
all the contexts under study.

Thus, one can characterize an intelligent agent as
”narrow” with respect to distribution ν over environ-
ments and the distribution γ over goals, based on eval-
uating it as having low intellectual breadth. A ”narrow
AI” relative to ν and γ would then be an AI agent with
a relatively high efficient pragmatic general intelligence
but a relatively low intellectual breadth.

Conclusion
Our goal here has been to push the formal understand-
ing of intelligence in a more pragmatic direction. More
work remains to be done, e.g. in specifying the envi-
ronment, goal and efficiency distributions relevant to
real-world systems, but we believe that the ideas pre-
sented here constitute nontrivial progress.

If the line of research pursued here succeeds, then
eventually, one will be able to do AGI research as fol-
lows: Specify an AGI architecture formally, and then
use the mathematics of general intelligence to derive
interesting results about the environments, goals and
hardware platforms relative to which the AGI architec-
ture will display significant pragmatic or efficient prag-
matic general intelligence, and intellectual breadth.
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