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Abstract

Universal Search is an asymptotically optimal way of
searching the space of programs computing solution
candidates for quickly verifiable problems. Despite the
algorithm’s simplicity and remarkable theoretical prop-
erties, a potentially huge constant slowdown factor has
kept it from being used much in practice. Here we
greatly bias the search with domain-knowledge, essen-
tially by assigning short codes to programs consist-
ing of few but powerful domain-specific instructions.
This greatly reduces the slowdown factor and makes
the method practically useful. We also show that this
approach, when encoding random seeds, can signifi-
cantly reduce the expected search time of stochastic
domain-specific algorithms. We further present a con-
crete study where Practical Universal Search (PUnS)
is successfully used to combine algorithms for solving
satisfiability problems.

Introduction

Universal Search is the asymptotically fastest way of
finding a program that calculates a solution to a given
problem, provided nothing is known about the prob-
lem except that there is a fast way of verifying solu-
tions (Lev73). The algorithm has the property that
the total time taken to find a solution is O(t∗), where
t∗ is the time used by fastest program p∗ to compute
the solution. The search time of the whole process is
at most a constant factor larger than t∗; typically this
depends on the encoding length of p∗. The algorithm
itself is very simple: It consists in running all possible
programs in parallel, such that the fraction of time al-
located to program p is 2−l(p), where l(p) is the size of
the program (its number of bits).

More formally, assume a Turing-complete language L
of binary strings that can encode all possible programs
in a prefix-free code. Let p∗ be the fastest program
that solves a problem of problem complexity n. Then
t∗ = f(n) is the number of time steps p∗ needs to com-
pute the solution. Let l(p∗) be the size of p∗ in L.
Then the algorithmic complexity of Universal Search is
O(f(n)). However, the multiplicative constant hidden

by this notation turns out to be 2l(p∗). (All the above
assumes that there is a known way of verifying a given

solution to the problem in time linear in the problem
size n.)

Searching an infinite number of programs in parallel
is impossible on a physical computer, thus an actual im-
plementation of this algorithm has to proceed in phases,
where in each phase more and more programs are run
in parallel and the total search time per phase is con-
tinually increased. See algorithm 1 for the pseudocode.

Algorithm 1: Universal Search.

Input: Programming language, solution verifier
Output: Solution
phase := 1;
while true do

for all programs p with l(p) ≤ phase do

timelimit := 2phase−l(p);
run p for maximally timelimit steps;
if problem solved then

return solution;
end

end
phase := phase + 1;

end

For certain concrete problems and general-purpose
languages it may seem improbable that the fastest pro-
gram solving the problem can be encoded by fewer
than, say, 50 bits, corresponding to a slowdown factor
of 250 ≈ 1015, making Universal Search impractical.

Previous Extensions and Related Work
Several extensions of universal search have made it more
useful in practice. The Optimal Ordered Problem Solver
(OOPS, (Sch04)) incrementally searches a space of pro-
grams that may reuse programs solving previously en-
countered problems. OOPS was able to learn universal
solvers for the Tower of Hanoi puzzle in a relatively
short time, a problem other learning algorithms have
repeatedly failed to solve. In (Sch95) a probabilistic
variant of Universal Search called Probabilistic Search
uses a language with a small but general instruction set
to generate neural networks with exceptional general-
ization properties.
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A non-universal variant (WS96) is restricted to
strictly domain-specific instructions plus a jump state-
ment. It is applied successfully to solving partially ob-
servable maze problems. The same paper also presents
ALS, an adaptive version of Universal Search, which
adjusts instruction probabilities based on experience.

Another recent development is Hutter’s HSearch al-
gorithm (Hut02). HSearch combines Universal Search
in program space with simultaneous search for proofs
about time bounds on their runtime. The algorithm
is also asymptotically optimal, but replaces the mul-
tiplicative slowdown by an additive one. It may be
significantly faster than Universal Search for problems
where the time taken to verify solutions is nontrivial.
The additive constant depends on the problem class,
however, and may still be huge. A way to dramati-
cally reduce such constants in some cases is a universal
problem solver called the Gödel Machine (Sch09).

Other attempts have been made at developing prac-
tically useful non-exhaustive search algorithms inspired
by Universal Search. This family of algorithms include
time-allocation algorithms for portfolios of diverse al-
gorithms (GS06).

Making Universal Search Practical

The more domain knowledge we have, the more we
can shape or restrict the space of programs we need to
search. Here we make Universal Search practically use-
ful by devising a domain-specific language that encodes
plausible (according to prior knowledge) programs by
relatively few bits, thus reducing the slowdown factor
to an acceptable size.

Dropping assumptions

Universal Search makes a number of assumptions about
the language L. We will keep the assumption that L is
a prefix-free binary code, and drop the following ones:

• L is Turing-complete,

• Every encoding corresponds to a valid program,

• L is infinite.

This does not mean that the opposites of those assump-
tions are true, only that they are not necessarily true
(L is still allowed to be infinite or Turing-complete).

Another implicit assumption that is sometimes made
on L is that its encodings represent a sequence of in-
structions in a standard programming language. Sub-
sequently, we generalize this interpretation to include
more restricted languages, such as encodings of param-
eter settings, random number generator seeds or top-
level routines (e.g. ’localSearch()’).

Thus, for Practical Universal Search (PUnS), L can
encode an arbitrary set of programs, all of which can
be domain-specific. While the language L thus may be-
come more flexible, the search algorithm for it remains
identical to Algorithm 1.

Optimality

PUnS inherits its optimality property directly from
Universal Search. As long as the language remains
Turing-complete, it has the same asymptotically op-
timal runtime complexity. In general it will be more
restrictive, so this statement does not necessarily hold
anymore. Still, the following, weaker one, holds:

Property 1 For every problem instance, the order of
runtime complexity of PUnS is the same as that of the
best program which its language can encode.

Integrating Domain Knowledge

There are two concrete approaches for integrating do-
main knowledge:

• We can restrict the language, to allow only programs
that are appropriate for the problem domain. This
can be done in a straightforward way if L is small
and finite.

• We can bias the allocation of time towards programs
that we suspect to perform better on the problem
domain. Universal Search allocates time according
to the descriptive complexity (i.e. the number of bits
in its encoding) of the program. This is related to
the concept of Occam’s Razor, reflecting the hope
that shorter programs will generalize better. Now,
given domain knowledge about which programs will
generally perform better, we can employ the same
reasoning and encode those with fewer bits.

Fundamental Trade-off

Defining the language is the key element in PUnS –
but this step has a strong inherent (and unresolvable)
trade-off: the more general the language, the bigger the
slowdown factor, and the more we reduce that one, the
more biased the language has to be.

PUnS should therefore be seen as a broad spectrum
of algorithms, which on one extreme may remain com-
pletely universal (like the original Universal Search) and
cover all quickly verifiable problems. On the other ex-
treme, if the problem domain is a single problem in-
stance, it may degenerate into a zero-bit language that
always runs the same fixed program (e.g. a hand-coded
program that we know will efficiently solve the prob-
lem). In practice, neither of those extremes is what we
want – we want an approach for solving a large number
of problems within (more or less) restricted domains.
This paper describes a general way of continually ad-
justing the universality/specificity of PUnS.

Practical Considerations

PUnS is a good candidate for multi-processor ap-
proaches, because it is easily parallelizable: the pro-
grams it runs are independent of each other, so the
communication costs remain very low, and the over-
head of PUnS is negligible.

Beyond the design of the language L, PUnS has no
other internal parameters that would require tuning.
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Furthermore, it is highly tolerant w.r.t. poorly designed
languages and incorrect domain-knowledge: the result
can never be catastrophic, as for every problem instance
PUnS will still have the runtime complexity of the best
solver that the language can express. Thus, an inappro-
priately designed language can be at most a constant
factor worse than the optimal one, given the same ex-
pressiveness.

Languages for PUnS

The only condition we need to observe for L is that the
encodings remain a prefix-free language. For complete
generality, the language can always contain the original
Turing-complete language of Universal Search as a fall-
back. Those encodings are then shifted to higher length,
in order to free some of the encodings for the domain-
specific programs.

The following sections will describe some variations
of PUnS, discussing some specific points along the spec-
trum (as mentioned above) in more depth. Clearly, if
appropriate in a domain, all those types of languages
can be combined into a single hybrid language.

Domain-biased Programming Languages

Consider a domain where no efficient or general algo-
rithms for solving problems exist, so that it is nec-
essary to search very broadly, i.e. search the space
of programs that might solve the problem. If we use
a standard Turing-complete language that encodes se-
quences of instructions, we have more or less the orig-
inal Universal Search - and thus a huge constant slow-
down. However, we can integrate domain knowledge
by adding (potentially high-level) domain-specific sub-
routines with short encodings to bias the search. Fur-
thermore, we can make the language sparser by re-
stricting how instructions can be combined (reminiscent
of strong typing in standard programming languages).
A language like this will remain Turing-complete, and
the slowdown factor still risks to be high: the run-
time will be acceptable only if the modified language
is either very sparse, i.e. almost all bit-strings do not
correspond to legal programs and thus only relatively
few programs of each length are run1, or it is compact
enough to allow for solution-computing programs with
no more than 50 bits. Successfully applied examples
of this kind of PUnS can be found in (WS96; Sch95;
Sch05).

A language that directly encodes solutions (with a
domain-specific complexity measure) causes PUnS to
perform a type of exhaustive search that iteratively
checks more and more complex solutions. This was
explored in a companion paper (KGS10) for searching
the space of neural networks, ordered by their encoding
length after compression.

1Note that the cost of finding legal programs domi-
nates when the language is extremely sparse, that is, only
solution-computing programs are legal.

Exploration of Parameter Space

If we know a good algorithm for arriving at a solution to
a problem, but not the settings that allow the algorithm
to solve the problem efficiently (or at all), PUnS can be
used to search for good parameters for the algorithm.
In this case, each program tested by PUnS is actually
the same algorithm, run with different parameters. We
can view the interpretation of that language as a non-
Turing complete virtual machine that runs “programs”
specified as parameter settings.

Any parametrized algorithm could be used as a vir-
tual machine for this type of search. However, the al-
gorithms that are best suited for this purpose are those
where parameters are discrete, and can naturally be
ordered according to the complexity of the search re-
sulting from a particular parameter setting. There is a
wide range of machine learning algorithms that exhibit
this characteristic in various ways (e.g. the number of
free variables in a function approximator used by an
algorithm).

Stochastic Algorithms

Consider a domain where a good algorithm exists and
the algorithm is either non-parametric, or good settings
for its parameters are known. However, the algorithm
is stochastic, and converges to a solution only in a small
(unknown) fraction of the runs. In such a domain, uni-
versal search could be employed to search the space
of random number generator seeds for the algorithm.
These seeds are naturally ordered by length, encoded
as prefix-free binary integers. While this is a very de-
generate language, it fulfills all criteria for being used
by Universal Search.

In this case PUnS will spawn more and more pro-
cesses of the stochastic algorithm in every phase, each
with a different seed, until one of them eventually finds
a solution. As the encodings have incrementally longer
encodings, we do not need to know anything about the
probability of success: exponentially more time is allo-
cated to processes with short encodings, so PUnS will
only spawn many more processes if they are needed,
i.e. if the first random seeds do not lead to convergence
fast enough.

In the rest of this section, we will present one such
example language, and analyze under which circum-
stances it is advantageous to apply PUnS to it. Con-
sider the language that encodes an unlimited number of
random seeds as ‘0k1’ for the kth seed, such that seed
k is allocated 2−k of the total time.

Let us assume a stochastic base-algorithm where the
time T required to find the solution is a random vari-
able, with a probability density function φ(t) and cu-
mulative probability function Φ(t) = P (treq ≤ t).

Then the time required by PUnS to find the solution
T ′ is the minimum of an infinite number of independent
realizations of T , with exponentially increasing penal-
ties:

T ′ = min
(

21T, 22T, 23T, . . . , 2kT, . . .
)
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Figure 1: Above: Probability density functions φ and
φ′, of the base distribution (σ = 1

2 log(10)) and PUnS,
respectively. Below: percentage of problems solved
faster than a certain time, for the base-algorithm and
PUnS.
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Figure 2: Above: Probability density functions φ and
φ′, of the wider base distribution (σ = log(10)) and
corresponding PUnS, respectively. Below: percentage
of problems solved faster than a certain time, for the
base-algorithm and PUnS.
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Figure 3: Mean times as a function of the σ parame-
ter, for both the base-algorithm and PUnS. The circles
correspond to the values for figures 1 and 2. Note the
log-scale on the y-axis: the mean time for the base algo-
rithm increases faster than exponential w.r.t. σ, while
it decreases slightly for PUnS.

Figure 4: The shades of grey in this plot code for the
proportion tb/tp, i.e. the factor by which the expected
solution time is reduced when employing PUnS instead
of the base-algorithm. The horizontal axis shows the
dependency on proportion q, while the vertical axis
corresponds to the interval size λ. The black line cor-
responds to limit cases, where both versions have the
same expected time: in the whole upper middle part
PUnS is better (large enough interval, and not too small
q), sometimes by orders of magnitude. The discontinu-
ities (dents) happen whenever λ traverses a power of 2,
i.e. whenever k is incremented.
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T ′ has density function

φ′(t) =

∞
∑

k=1

φ(t/2k)

∞
∏

i=1,i6=k

1 − Φ(t/2i)

and cumulative density function

Φ′(t) = 1 −

∞
∏

k=1

(1 − Φ(t/2k)).

Note that it is possible to truncate the computation
of the infinite sums and products after a small number
of terms, under the reasonable assumption that φ(t)
decays fast as t approaches zero.

Figure 1 illustrates the simple case where the required
time is normally distributed in log-time space (i.e. the
log-normal distribution) with µ = 0 and σ = 1

2 log(10).
We observe that PUnS reduces the probability of long
runtimes (over 5 seconds). In general it has the prop-
erty of reducing the right (expensive) tail of the base
distribution. When the base distribution has a larger
standard deviation the effect is even more pronounced
(see Figure 2, which shows the same plot as before, but
for σ = log(10)). In this case we observe an additional
beneficial effect, namely that the mean time is reduced
significantly. In figure 3 we plot the mean times as a
function of σ to illustrate this effect in detail.

Another case of interest is a stochastic base-algorithm
with two distinct outcomes: with probability q it finds
the solution after t1, otherwise it requires t2 = λt1.
This algorithm has an expected solution time of

tb = t1 [1 + (λ − 1)(1 − q)] .

Applying PUnS to the above language, it can be shown
that the expected time changes too

tp = t1

[

1 + (λ − 2k)(1 − q)k+1 +

k
∑

i=0

2i(1 − q)i

]

,

where k = blog2 λc is the largest integer such that
2k ≤ λ. Figure 4 shows for which values of q and
λ PUnS outperforms the base-algorithm, and by how
much (note that those results are independent of t1).

To summarize, whenever we have access to a stochas-
tic domain-specific algorithm with high variability in its
solution times, using PUnS with a simple language to
encode random seeds (e.g. the one introduced in this
section) can reduce the expected solution time by orders
of magnitude.

Case study: SAT-UNSAT

This section presents a small case-study of using PUnS
on a mixed SAT-UNSAT benchmark with 250 boolean
variables. We use as the underlying base-programs two
standard algorithms:

• A local search algorithm (G2WSAT, (LH05)) which
is fast on satisfiable instances, but does not halt on
unsatisfiable ones.

• A complete solver (Satz-Rand (GSCK00)) that can
handle both kinds of instances, but is significantly
slower.

Both these algorithms are stochastic, but G2WSAT
has a high variance on the time needed to find a solution
for a given instance. We set all parameters to default
values (G2WSAT: noise = 0.5, diversification = 0.05,
time limit = 1h; Satz-Rand: noise = 0.4, first-branching
= most-constrained) (GS06).

The language we define for PUnS combines both
base-algorithms, employing the coding scheme intro-
duced in the previous section for the high-variance
G2WSAT: ’11’ encodes running of Satz-Rand, ’01’,
’001’, ’0...01’ encode running of G2WSAT with a ran-
dom seed (a different seed for every number of ’0’ bits).

In this case, a third of the total computation time is
allocated to each Satz-Rand, the first random seed for
G2WSAT and all other random seeds combined. With
this language, the optimal performance corresponds to
that of Oracle which for every problem instance knows
in advance the fastest solver and the best random seed.
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Figure 5: Percentage of instances solved, given a cer-
tain computation time for G2WSAT, Satz-Rand, Oracle
and PUnS on the mixed SAT-UNSAT-250 benchmark
(averaged over 20 runs with different random seeds).

Figure 5 shows the results of running all four algo-
rithms (including Oracle) on a set of 100 satisfiability
instances, half of which are unsatisfiable. We find that
Practical Universal Search is indeed a robust way of
combining the base-algorithms. By construction, it is
never slower by more than a factor 3 w.r.t. the best
base-algorithm. In addition, the reduced risk of a bad
initialization (seed) for G2WSAT on the boundary cases
(almost unsatisfiable) is clearly visible as well: Com-
pare the much steeper increase of the PUnS plot, as
compared to the G2WSAT one. Finally, as expected,
the PUnS performance is approximately that of Ora-
cle with a constant factor slowdown – the difference is
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due to the fact that the encoding length of the optimal
random seed is not bounded a priori.

Conclusions

Universal Search can be used in practice by biasing its
language for encoding programs. We provided guide-
lines for integrating domain-knowledge, possibly (but
not necessarily) at the cost of universality. We de-
scribed a simplified language for non-universal prob-
lem domains, and emphasized the flexibility of the ap-
proach. In particular, we established that encoding ran-
dom seeds for stochastic base-algorithms can be highly
advantageous. Finally we conducted a proof-of-concept
study in the domain of satisfiability problems.

Future work

One direction to pursue would be to develop a gen-
eral adaptive version of PUnS, where program proba-
bilities change over time based on experience, like in
ALS (WS96). A related direction will be to extend
PUnS along the lines of OOPS (Sch04), reducing sizes
and thus increasing probabilities of encodings of pro-
grams whose subprograms have a history of quickly
solving previous problems, thus increasing their chances
of being used in the context of future problems. There
also might be clever ways of adapting the language
based on intermediate results of (unsuccessful) runs, in
a domain-specific way.
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