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Abstract

How to search the space of programs for a code that solves
a given problem? Standard asymptotically optimal Univer-
sal Search orders programs by Levin complexity, implement-
ing an exponential trade-off between program length and run-
time. Depending on the problem, however, sometimes we
may have a good reason to greatly favor short programs over
fast ones, or vice versa. Frontier Search is a novel framework
applicable to a wide class of such trade-offs between program
size and runtime, and in many ways more general than previ-
ous work. We analyze it in depth and derive exact conditions
for its applicability.

Introduction

In an inversion problem, the aim is to find a program p
that produces a desired output x. Algorithms that search
the space of programs for p are guided (implicitly or ex-
plicitly) by an optimality criterion, which is generally based
on program length and runtime. Levin complexity, a crite-
rion where the trade-off between program length and run-
time is exponential, can readily be optimized using Levin
Search (Lev73). The framework of ‘speed priors’ (Sch02)
results in a more flexible search scheme. The aim of this
paper is to develop a search scheme applicable to an even
wider class of user-defined optimality criteria.

More formally, consider a programming language L and a
(countable) set P of programs. Let p : N→P be an enu-
meration of P . We refer to the i-th program as pi. Then,
Levin Search finds p ∈P such that L(p) = x. It works by
executing in parallel all programs in P such that the frac-

tion of time allocated to the i-th program is 2−l(pi)/S, where
l(pi) is the length of a prefix-free binary encoding of pi,
and 0 < S ≤ 1 is a normalization constant. Alternatively,
a growing number of programs can be executed for a fixed
exponentially growing time one after the other, which in-
volves restarting the programs several times. This simpler
algorithm performs worse only by a constant factor.

Levin Search, though simple in its form, enjoys two
important theoretical properties. The first property con-
cerns the time required to find a solution. It is guaranteed
that Levin Search solves the inversion problem within time

2l(p⋆)+1 ·S · τ(p⋆), where p⋆ ∈P is the fastest program that
solves the problem, and τ(p⋆) is the number of time steps af-
ter which p⋆ halts. Since p⋆ depends solely on the problem

itself, one can claim that Levin Search solves the problem in
time linear to the runtime of the fastest program available,
despite the prohibitively large multiplicative constant.

The second property, on the other hand, characterizes the
quality of the solution. It has been shown that the program
found by Levin Search (asymptotically) optimizes the Levin
complexity Kt defined as

Kt(x) = min
p∈P

{

l(p)+ logτ(p)
∣

∣ L(p) = x
}

,

which is a computable, time-bounded version of the Kol-
mogorov complexity (LV93). Note that in this paper, all
logarithms are to base 2.

Whereas the linear time bound property of Levin Search
receives considerable appreciation, less attention is paid to
the quality of the solution. In general, solution quality is
measured by the complexity function. Thus, a particular
search scheme such as Levin Search implies a complexity
function it (asymptotically) minimizes. In this paper we
approach the problem from the other end, assuming that a
complexity function is given, but not a search scheme. The
central question asked in this paper is:

Given a certain optimiality criterion,
how do we search the space of programs?

The remainder of the paper is structured as follows. First
we discuss the space of possible complexity criteria, then
we introduce our algorithm, Frontier Search, and give exact
conditions on its applicability. We find that this approach
allows for optimality criteria that are more flexible than the
speed prior. Finally we present an approximatation to Fron-
tier Search that achieves asymtotically constant overhead
complexity.

Generalized Complexity Criteria

Let us first focus on the form of Kt . Assume both p1 and
p2 solve the problem L(p) = x and achieve the same value
of l(p)+ log(τ(p)). If p1 is m bits shorter than p2, the ex-
ecution time of p1 would be 2m times larger than for p2.
This encodes an inherent trade-off between the program ex-
ecution time and its length, namely, how much more time
we are willing to invest for finding a solution which is 1
bit shorter. In the remainder of this paper we replace the
concept of program length with program order in the sense
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of the enumeration p : N→P . The familiar length encod-
ing can be recovered by enumerating programs by increasing
length.

Now consider the following three scenarios:

1. We are trying to find a relatively tight upper bound on
the Kolmogorov complexity of a string x. This amounts
to finding a concise representation for a given x, and the
length of the program found matters much more than its
execution time. In this case, we might choose a different
complexity criterion instead of Kt which emphasizes the
program length more, for example,

K1(x) = min
{

[l(p)]s + log(τ(p))
∣

∣ L(p) = x
}

with s > 1. (In the limit s→ ∞ we get Kolmogorov com-
plexity (LV93). Unfortunately, it is incomputable.)

2. We are searching for a representation of x which is as-
sumed to be used a lot in the future, amounting to execut-
ing the resulting program p regularly. We may argue that
quicker programs are prefered despite their slightly longer
length since they will be executed often. In this case, the
complexity criterion

K2(x) = min
{

[l(p)]1/s + log(τ(p))
∣

∣ L(p) = x
}

with s > 1, which favours quicker programs, makes more
sense.

3. We have prior knowledge telling us that programs with
a certain structure (in the simplest case, programs of a
certain length) should be prefered, and we would like to
encode such knowledge into the complexity criterion. An
extreme example is that we do not want to run programs
of trivial length (e.g., l(p) = 1) for half of the total run-
ning time as suggested in Levin Search. (Certainly, such
prior knowledge can be incorporated into the program-
ming language itself, but that necessitates re-designing
the language every time we vary the requirement (SS10).)

All these scenarios call for a more general approach: We
want our search to respect a complexity criterion suitable for
the problem at hand. Starting from a complexity criterion
which encodes the desired trade-off between execution time
and program order, we build up a search algorithm that finds
the optimal solution in the sense of the given complexity cri-
terion. The search algorithm should be invariant w.r.t. any
monotonically increasing (i.e., order preserving) transfor-
mation of the complexity criterion, since the program min-

imizing l(p) + log(τ(p)) would also minimize 2l(p) · τ(p),
or in general, f (l(p)+ log(τ(p))) for any monotonically in-
creasing function f : R→ R.

Our answer to the problem above is a simple search algo-
rithm called Frontier Search. It maintains a ‘frontier’ of the
possible execution steps and at each iteration selects the one
minimizing the given complexity criterion. We prove that
under reasonable technical constraints on the complexity
criterion Frontier Search indeed finds the optimal program.
Also, we show the connection between Frontier Search and
Levin Search, as well as universal search with ‘speed prior’
(Sch02), and demonstrate that Frontier Search is more gen-
eral since it allows the encoding of speed preferences which
cannot be represented using the speed prior approach.

Frontier Search

We consider the general complexity criterion

Kψ(x) = min
i∈N

{

ψ(i,τi)
∣

∣ L(pi) = x
}

,

where τi is the execution time of pi, and ψ : N×N→ R is
a complexity function encoding the trade-off between pro-
gram length and execution time. For example, for the choice
ψ(i,τ) = 2i · τ , we recover Levin Search under the triv-
ial encoding pi = 1 · · ·10 (i ones, one zero). Futhermore,
ψ(i,τ) = τ/πi, with πi > 0 and ∑i∈N πi = 1, encodes univer-
sal search based on the speed prior π (Sch02).

Algorithm 1 presents the pseudocode for Frontier Search,
and Figure 1 illustrates its operation. The set

{

(i,τi)
∣

∣ i ∈
{1, . . . ,n}

}

⊂N×N with τn = 1 forms the current ‘frontier’,
i.e., available executions in the next time step. If program
pn gets executed, then the frontier automatically expands to
include a new program pn+1. We assume that for multiple j
minimizing ψ( j,τ j +1) the smallest j is chosen.

Algorithm 1: Frontier Search.

Input: ψ , L, x, P

Output: p ∈P such that L(p) = x
n← 1;
τn← 0;
while true do

i← argmin
{

ψ( j,τ j +1)
∣

∣ j ∈ {1, . . . ,n}
}

;
execute pi for 1 step;
if pi halts and L(pi) = x then return pi;
τi← τi +1;
if i = n then

n← n+1;
τn← 0;

end

end

The following definitions will prove handy for the analy-
sis of Frontier Search.

Definition 1. Formally, the set of all possible frontiers is
given by

F =
{

{(1,τ1), . . . ,(n−1,τn−1),(n,1)}
∣

∣ n ∈ N

and τi ∈ N ∀ i ∈ {1, . . . ,n−1}
} ∼=

⋃

n∈N

N
n−1 .

For a given frontier F = {(1,τ1), . . . ,(n,1)} ∈F we say
that the grid points (i,τ) ∈ F are on the frontier, points (i,τ)
with i < n and τ < τi are inside the frontier, and all other grid
points are outside the frontier, see also Figure 1. The points
inside the frontier correspond to the program steps already
executed by Frontier Search in order to reach the current
frontier.

For any given frontier there exists a complexity function
ψ that makes Frontier Search indeed reach this frontier. A
simple choice is to set ψ to 1/2 for all points inside the fron-
tier, and to i+ τ for all other points.
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Figure 1: Illustration of Frontier Search. In each iteration, a
frontier of possible execution steps (i,τi +1), i.e., executing
the (τi + 1)-th command of program pi, is maintained. The
step which minimizes ψ(i,τi +1) is executed.

Definition 2. We define the partial order relation

{(1,τ1), . . . ,(n,1)} ≤ {(1,τ ′1), . . . ,(n
′,1)}

⇔ n≤ n′ and τi ≤ τ ′i for all i ∈ {1, . . . ,n}
on the set F of frontiers.

In this canonical order relation it holds F ≤ F ′ if and only
if the points inside F are a subset of the points inside F ′.
Thus, for each complexity function ψ Frontier Search gen-

erates a strictly growing sequence (F
ψ

t )t∈N of frontiers.

Definition 3. For a frontier F = {(1,τ1), . . . ,(n,1)} ∈F we

define the time T (F) = ∑n−1
i=1 (τi− 1) necessary for frontier

search to reach this frontier.

The identity T (F
ψ

t ) = t is obvious.

Definition 4. Assume step τ + 1 of program pi is executed
by Frontier Search with complexity function ψ in finite time.
Then we associate the frontier

F
ψ
(i,τ)

= max
{

F
ψ

t

∣

∣ t ∈ N and (i,τ) ∈ F
ψ

t

}

with the tuple (i,τ).

Let us introduce a useful auxiliary property of complexity
functions:

Definition 5. We say that a complexity function ψ : N×N→
R is frontier-bounded if for any (i,τ) ∈ N×N there exist

n > i and (τ1, . . . ,τi−1,τi+1, . . . ,τn−1) ∈ N
n−2, such that

ψ( j,τ j) >ψ(i,τ) ∀ j ∈ {1, . . . , i−1}
ψ( j,τ j)≥ψ(i,τ) ∀ j ∈ {i+1, . . . ,n−1}
ψ(n,1)≥ψ(i,τ) .

Note that only the first of the three inequalities is strict.
Intuitively, the definition states that for each (i,τ) there ex-
ists a frontier

{

(i,τi)
∣

∣ i ∈ {1, . . . ,n}
}

∋ (i,τ) containing this
tuple, leading to the execution of step τ of program pi in the
next iteration.

The following statement provides us with two simple cri-
teria implying frontier-boundedness.

Proposition 6. A complexity function ψ : N×N→R fulfill-
ing one of the properties

∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ ψ(i′,τ ′)≤ ψ(i,τ)
}∣

∣ < ∞ (1)

∀(i,τ) ∈ N×N

or

lim
i→∞

ψ(i,1) =∞ (2)

and lim
τ→∞

ψ(i,τ) =∞ ∀i ∈ N

is frontier-bounded.

Proof. Case (1): For fixed (i,τ) ∈ N × N consider the
set S = {(i′,τ ′) ∈ N×N |ψ(i′,τ ′) ≤ ψ(i,τ)}. We define
n = 1 + max{i ∈ N |∃τ ∈ N such that (i,τ) ∈ S} as well as
τi = 1+max{τ ∈N such that (i,τ)∈ S} for all i∈{1, . . . , i−
1}∪{i + 1, . . . ,n−1}. All maxima exist because S is finite
per assumption, and using the convention max( /0) = 0.
Case (2): Again we fix (i,τ) ∈ N × N. From
limn→∞ ψ(n,1) = ∞ we conclude that there exists n∈N such
that ψ(n,1) ≥ ψ(i,τ). Now for all j ∈ {1, . . . , i− 1}∪{i +
1, . . . ,n−1} we have limτ j→∞ ψ( j,τ j) = ∞, from which we

conclude the existence of τ j such that ψ( j,τ j)≥ ψ(i,τ).
By construction in both cases the frontier size n ∈ N and
the tuples (τ1, . . . ,τi−1,τi+1, . . . ,τn−1) fulfill the conditions
of Definition 5.

The next proposition clarifies the significance of frontier-
boundedness, namely that this property guarantees that
Fontier Search executes every program for sufficiently many
steps.

Proposition 7. Frontier Search applied to a complexity
function ψ executes program pi for τ steps in finite time for
all (i,τ) ∈ N×N iff ψ is frontier-bounded.

Proof. (⇐) Assume ψ is frontier-bounded and fix (i,τ) ∈
N × N. Then we define n = min{n′ ∈ N |n′ >
i and ψ(n′,1) ≥ ψ(i,τ)}, which is well-defined due to the
frontier-boundedness of ψ . Accordingly we define τ j =
min{τ ′ ∈ N |ψ( j,τ ′) > ψ(i,τ)} for each j ∈ {1, . . . , i− 1}
and τ j = min{τ ′ ∈ N |ψ( j,τ ′) ≥ ψ(i,τ)} for all j ∈ {i +
1, . . . ,n− 1}, which are all well-defined (none of the argu-
ments of the min-operator is empty) due to ψ being frontier-
bounded. When starting from the corresponding frontier
F = {(1,τ1), . . . ,(n− 1,τn−1),(n,1)}, Frontier Search exe-
cutes program pi in the next step. Obviously it is impossible
for Frontier Search to pass any point of this frontier with-
out executing (i,τi). The search can spend only T (F) < ∞
steps before reaching this frontier. Thus, step τi of program
pi is executed in step T (F) + 1 < ∞. As an aside, this ar-

gument shows F = F
ψ
(i,τ)

. In other words, the frontier F
ψ
(i,τ)

associated with (i,τ) can be constructed as described above.

(⇒) For (i,τ) ∈ N× N let F
ψ
(i,τ)

= {(1,τ1), . . . ,(n,1)}
denote the associated frontier. Then n and (τ1, . . . ,τi−1,
τi+1, . . . ,τn−1) per construction fulfill the requirements of
Definition 5.
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Corollary 8. Assume there exists p ∈ P with L(p) = x.
Then Frontier Search applied to a frontier-bounded com-
plexity function ψ halts.

If ψ is not frontier-bounded some steps never get exe-
cuted. Let us have a look at two illustrative counter ex-
amples: First consider ψ(i,τ) = τ − 1/i. This complex-
ity function is not frontier-bounded since for all n ∈ N we
have ψ(n,1) = 1− 1/n < 1 = ψ(1,2). In this case, Fron-
tier Search executes every program only for a single step.
Second, consider ψ(i,τ) = i− 1/τ , which is not frontier-
bounded since ψ(1,τ) < ψ(2,1) for all τ ∈ N. With this ψ ,
Frontier Search executes the first program forever (provided
that it doesn’t halt). The same behavior results for constant
ψ(i,τ), or for ψ(i,τ) = l(pi) corresponding to Kolmogorov
complexity.

Assume ψ(i,τ) is non-decreasing in τ . Intuitively, the
proceeding of frontier search can be understood by a me-
chanical picture. Consider a landscape on top of the positive
quadrant of the plane, with grid altitude profile given by ψ .
The execution of Frontier Search amounts to flooding water
into the landscape at the origin, such that exactly one integer
square is flooded in each iteration, corresponding to the next
program step executed. See Figure 2 for an illustration.

i

τ

ψ

Figure 2: The operation of Frontier Search can be thought
of as filling water into the landscape given by ψ(i,τ), which
in this case must be monotonic in τ .

Since ψ serves as a complexity criterion, it is reason-
able to assume that quicker programs are always preferred.
If possible, we will further assume that programs are pre-
ordered by complexity. This leads us to the definition of two
handy conditions on complexity functions ψ:

Definition 9. We say that a complexity function ψ is proper
if it is frontier-bounded and fulfills the monotonicity condi-
tions

ψ(i,τ)≤ψ(i,τ +1) ∀(i,τ) ∈ N×N

and ψ(i,1)≤ψ(i+1,1) ∀ i ∈ N .

We call a complexity function separable if it is frontier-
bounded and is of the form ψ(i,τ) = ηi · τ with ηi > 0 and
ηi ≤ ηi+1 for all i ∈ N.

A few notes are in order. First, it is easy to see that sep-
arability implies properness. Second, a separable complex-
ity function is equivalent, for example, to one of the form

ψ(i,τ) = log(ηi) + log(τ) (or any other monotonic trans-
formation). However, in the following we will stick to the
multiplicative form, which has a straight forward interpreta-
tion: We fix the same cost ηi for all execution steps of pro-
gram pi. This turns πi = 1/ηi into a (non-normalized) prior
over the space P of programs. For example, Levin Search

induces the prior πi = 2−l(pi). In contrast to speed prior-
based search, the prior πi = 1/ηi may be improper1 without
distorting Frontier Search in any way. This make Frontier
Search widely applicable, even in the restricted case of sep-
arable complexity functions.

While we already know that frontier-boundedness makes
sure that Frontier Search finds a solution to the problem (if
one exists), this property is not sufficient to guarantee opti-
mality. Here, properness comes into play:

Proposition 10. We consider Frontier Search with proper
complexity function ψ . Then Frontier Search finds the solu-
tion which minimizes ψ . Let i⋆ be the index of the minimiz-
ing program solving the problem in τ⋆ steps, then the total
number of steps T (F

ψ
(i⋆,τ⋆)

)+ 1 executed by Frontier Search

is given by
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) < ψ(i⋆,τ⋆)
}∣

∣

+
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) = ψ(i⋆,τ⋆) and i≤ i⋆
}∣

∣ .

Proof. Consider the last frontier F
ψ
(i⋆,τ⋆)

= {(1,τ1), . . . ,(n−
1,τn−1),(n,1)} before executing the final statement of pi⋆ .
In this moment we have ψ(i,τi) ≥ ψ(i⋆,τ⋆) for all points
on the frontier. Now the monotonicity ensures ψ(i′,τ ′) ≥
ψ(i′,τi′) ≥ ψ(i,τ) for all i′ ∈ {1, . . . ,n} and τ ′ > τi′ , and
ψ(i′,τ ′) ≥ ψ(i′,1) ≥ ψ(n,1) ≥ ψ(i,τ) for all i′ > n and
τ ∈ N. Thus, all points outside the frontier have complex-
ity larger or equal to ψ(i,τ), independently of whether they
solve the problem or not. On the other hand, all points inside
the frontier have complexity values of at most ψ(i⋆,τ⋆). But
all steps corresponding to these points have been executed
without solving the problem and halting.

The number of steps follows from the first statement, just
notice that we assume that the program with smaller index
is selected whenever two steps achieve the same complexity.

Corollary 11. We consider Frontier Search with proper
complexity function ψ . Let i⋆ be the index of the minimiz-
ing program solving the problem in τ⋆ steps. Then the total
number of steps is bounded by

∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) < ψ(i⋆,τ⋆)
}∣

∣

≤ T (F
ψ
(i⋆,τ⋆)

) < T (F
ψ
(i⋆,τ⋆)

)+1 ≤
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ)≤ ψ(i⋆,τ⋆)
}∣

∣

Now we can effectively bound the total number of steps
executed by Frontier Search for any given proper complexity
criterion. We demonstrate three important cases:

1The prior π is proper if it can be normalized to sum to one, i.e.,
if ∑i∈N πi < ∞.
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Example 12. Consider the criterion in the Levin complexity
ψ(i,τ) = 2i · τ . This function is separable with prior πi =
2−i. If program i halts after running τ steps, the total execu-
tion time is upper bounded by

T (F
ψ
(i,τ)

) ≤
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ 2i′ · τ ′ ≤ 2i · τ
}∣

∣

=
∣

∣

{

(1,τ ′)
∣

∣ τ ′ ≤ 2i−1τ
}∣

∣

+
∣

∣

{

(2,τ ′)
∣

∣ τ ′ ≤ 2i−2τ
}∣

∣

+ · · ·+
∣

∣

{

(i,τ ′)
∣

∣ τ ′ ≤ τ
}∣

∣

+
∣

∣

{

(i+1,τ ′)
∣

∣ τ ′ ≤ τ

2

}∣

∣+ · · ·+1

≤ 2i−1τ +2i−2τ + · · ·+ τ +
⌊τ

2

⌋

+
⌊τ

4

⌋

+ · · ·+1

≤ 2iτ ∈ O(τ) .

So the total execution time is linear in τ . The same calcula-
tion works for arbitrary proper speed priors πi.

Example 13. As a second example we consider the sepa-
rable criterion ψ(i,τ) = i · τ , which corresponds to the im-
proper prior πi = 1/i. Again, let program pi halt after τ
steps. The number of steps for Frontier Search to execute is
bounded by

T (F
ψ
(i,τ)

) ≤
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ i′ · τ ′ ≤ i · τ
}∣

∣

≤ iτ · log(iτ) ∈ O(τ · log(τ)) ,

which may still be considered affordable.

Example 14. Last but not least we consider the complexity
function ψ(i,τ) = τ · (i + τ), which puts a strong empha-
sis on short execution time. It is proper, but not separa-
ble, because it increases the penalty per step the longer a
program runs. Let program pi halt after τ steps, and let
c = ψ(i,τ) = τ · (i + τ) be its complexity. Then the total
number of steps executed is lower bounded by

T (F
ψ
(i,τ)

) ≥
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ τ ′ · (i′+ τ ′) < c
}∣

∣

=

∣

∣

∣

∣

{

(1,τ ′)

∣

∣

∣

∣

τ ′ <
−1+

√
1+4c

2

}∣

∣

∣

∣

+

∣

∣

∣

∣

{

(2,τ ′)

∣

∣

∣

∣

τ ′ <
−2+

√
4+4c

2

}∣

∣

∣

∣

+ · · ·+
∣

∣

∣

∣

∣

{

(l,τ ′)

∣

∣

∣

∣

∣

τ ′ <
−l +

√
l2 +4c

2

}∣

∣

∣

∣

∣

,

where

l = argmin
k

{

−k +
√

k2 +4c

2
≤ 2

}

⇒ l ≥ c

2
−2 .

So when c is sufficiently large,
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ τ ′ · (i′+ τ ′) < c
}∣

∣

≥
c
2−2

∑
k=1

−k +
√

k2 +4c

2

≥
( c

2
−2

) 2− c
2
+

√

c2

4
+4+3c

2
∈Ω(c) = Ω(τ2) .

Thus, the search requires Ω(τ2) steps.2

Reduction of Overhead Complexity

Algorithm 1 has one serious drawback compared to plain
Levin Search: The ‘argmin’-operation used to decide which
program to execute next takes at least log(n) operations (us-
ing efficient data structures), where n is the size of the cur-
rent frontier. This growing overhead, compared to the con-
stant time spent on executing the underlying programs, is
unsatisfactory, because asymptotically the fraction of time
spent on program execution tends to zero. In this section
we provide an algorithm that, under reduced requirements,
achieves an amortized constant overhead.

Instead of strictly minimizing the complexity function ψ
in each iteration we weaken the requirements as follows:

• We consider separable complexity functions. Further-
more, we assume that ηi is available in a binary encoding.

• The minimization of the complexity function may be only
approximate. Let τi denote the position of the current
frontier for program pi, and let τ̃i be the number of steps
actually executed. Then we require limτi→∞ τ̃i/τi = 1 for
all i ∈ N.

• The complexity function does not need to be minimized
in each single iteration. Instead, we ask for a growing se-
quence (tn)n→∞ of iterations in which the current frontier
approximately minimizes the complexity function.

Approximate Frontier Search is introduced in Algo-
rithm 2. It approximates Frontier Search in the above sense.
The algorithm runs in epochs, maintaining a growing tar-
get complexity C. In each epoch it executes all programs
with single-step complexity ηi ≤ C/⌈log(C)⌉2 until they
reach the target complexity, or in other words the frontier
ψ ≈C. The frontier is approximated by delaying the execu-
tion of programs with relatively high single-step complexity
ηi > C/⌈log(C)⌉2. It is easy to see that Approximate Fron-
tier Search indeed fulfills the conditions listed above. As
soon as C/⌈log(C)⌉2 (which tends to infinity) exceeds ηi

the condition τ̃i = τi is fulfilled for the sequence (te)e∈N of
iterations finishing epochs.

In the following we analyze the complexity of the over-
head created by Algorithm 2.

Proposition 15. The number of operations of Algorithm 2
in between executing two program steps is upper bounded
by a constant in an amortized analysis.

Proof. We need a few basic facts about operations on binary
encoded numbers. Recall that adding a constant value to a
variable takes amortized constant time. Therefore count-
ing in a loop from 1 to m takes O(m) time. Comput-
ing a + b takes O(min{log(a), log(b)}) operations, and so
does the comparison a < b. The multiplication a · b re-
quires O(log(a) · log(b)) operations, and an integer division

⌊a/b⌋ costs O(log(a/b) · log(b)) ≤ O((log(a))2) computa-
tional time. The computation of ⌈log(a)⌉ can be performed
in at most O(log(a)) operations.

2A function fulfills f (x) ∈ Ω(g(x)) if there exist N ∈ N and
c ∈ R such that | f (n)|> c ·g(n) for all n > N.
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Algorithm 2: Approximate Frontier Search.

Input: η , L, x, P , C0

Output: p ∈P such that L(p) = x
e← 1; t← 1; n← 1; τ1← 0;
C←max{η2

1 ,C0}; M← ⌈log(C)⌉2;
while true do

C← 4 ·C; M←M +4;
for i = 1, . . . ,n do

m← ⌊C/ηi⌋− τi;
run program pi for m steps;
if pi halts and L(pi) = x then return pi;
τi← τi +m; t← t +m;

end
while true do

m← ⌊C/ηn+1⌋;
if m < M then break;
n← n+1;
run program pn for m steps;
if pn halts and L(pn) = x then return pn;
τn← m; t← t +m;

end
te← t; e← e+1;

end

Note that adding four to M and quadrupling C corre-
sponds to maintaining the relation M = ⌈log(C)⌉2.

Consider the number m computed in the for-loop. We
show by induction that this number exceeds M: In the first
iteration we have n = 1, such that the loop only runs over
a single program, and C = 4 ·max{η2

1 ,C0} makes sure that

⌊C/η1⌋ ≥M = ⌈log(C)⌉2 for suitable C0. In later iterations
we know that ⌊C/ηi⌋ − τi ≥ M was fulfilled in the previ-
ous iteration for all i ∈ {1, . . . ,n} (this is trivially fulfilled
for the programs added in the inner while loop), implying
⌊C/ηi⌋ ≥M, which reads ⌊C/(4 ·ηi)⌋ ≥M−4 in the nota-
tion of the current iteration. Together with τi ≤ ⌊C/(4 ·ηi)⌋
and ⌊C/2⌋ > 4 (for C0 ≥ 1/2) this implies ⌊C/ηi⌋ ≥ M.
Thus, all programs executed in an epoch are executed for
at least M steps. Instead of choosing C0 unnecessarily large,
we may let the target complexity C start small and wait for
C to exceed C0 after finitely many epochs.

The budget available per epoch is linear in the num-
ber of program steps executed, which is O(n ·M). It is
easy to see that all additions, subtractions, and loop coun-
ters/comparisons easily fit into this time budget. The poten-
tially most costly operation in the program is the division
⌊C/ηi⌋. Its complexity is upper bounded by O(⌈log(C)⌉2),
which by construction coincides with O(M).

Discussion

Frontier Search provides a very flexible alternative to Levin
Search. This increased flexibility enables us to respect com-
plicated complexity functions in the search.

The algorithm is known to work with a quite general set of
complexity functions (see Proposition 7), while the still very
flexible space of proper complexity functions is minimized
by the algorithm exactly (see Proposition 10). For the more

restricted case of separable complexity functions we provide
the algorithm Approximate Frontier Search which achieves
constant overhead, while preserving the asymptotic proper-
ties of Frontier Search.

Even the relatively restricted case of separable complex-
ity functions provides interesting search schemes. The only
restriction on the growing sequence ηi of step costs is that it
takes infinitely many different values. This excludes nearly
everywhere constant priors, but it does not require the prior
to be proper.

Non-separable cases may be of even greater interest.
There are different reasons why we may wish to vary the
cost of executing a command over time. On the one hand
one may search for a program with runtime in the ‘right’ or-
der of magnitude by only penalizing steps that exceed the
next power of, e.g., ten. Or one may, like in example 14,
increase the penality over time, strongly favoring short exe-
cution time.

All these different search schemes can be realized with
Frontier Search. The specification of a particular search
scheme is implicitly done by providing a complexity func-
tion, which does not require any changes to the Frontier
Search algorithm itself, and is intuitive and therefore easy
to specify by the user.

Conclusion

We demonstrate the theoretically powerful search algorithm
Frontier Search, which automatically finds programs opti-
mal w.r.t. a given complexity criterion. It is provably more
general than Levin Search and speed prior-based search in
several respects: We can handle improper priors, and even
time-varying execution costs under weak and intuitively
meaningful technical conditions. For the case of separa-
ble complexity functions we propose Approximate Frontier
Search, which achieves constant computational overhead.

Like Levin Search, the current approach is limited to pro-
grams computing a fixed output x. We leave generalizations
to more relevant cases such as minimizing a loss function
given data to future work.
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