
Searching for Minimal Neural Networks in Fourier Space

Jan Koutnı́k, Faustino Gomez, and Jürgen Schmidhuber
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland

University of Lugano & SUPSI, Switzerland

Abstract
The principle of minimum description length suggests look-
ing for the simplest network that works well on the training
examples, where simplicity is measured by network descrip-
tion size based on a reasonable programming language for
encoding networks. Previous work used an assembler-like
universal network encoding language (NEL) and Speed Prior-
based search (related to Levin’s Universal Search) to quickly
find low-complexity nets with excellent generalization per-
formance. Here we define a more natural and often more
practical NEL whose instructions are frequency domain co-
efficients. Frequency coefficients may get encoded by few
bits, hence huge weight matrices may just be low-complexity
superpositions of patterns computed by programs with few
elementary instructions. On various benchmarks this weight
matrix encoding greatly accelerates the search. The scheme
was tested on pole-balancing, long-term dependency T-maze,
and ball throwing. Some of the solutions turn out to be un-
expectedly simple as they are computable by fairly short bit
strings.

Introduction
Given some training experience, what is the best way of
computing a weight matrix for a neural network such that
it will perform well on unseen test data? Let us ignore
for the moment the numerous gradient and evolution based
training methods (both with or without teachers), and fo-
cus on the essential. The principle of minimum description
length (MDL) [WB68, Ris78, LV97] suggests one should
search for the simplest network that works well on the train-
ing examples, where simplicity is measured by the descrip-
tion size of the network, in a reasonable (possibly uni-
versal) programming language. In theory, the simplest or
most compressible weight matrix for a given problem is
the one with lowest algorithmic information or Kolmogorov
complexity, i.e. the one computable by the shortest pro-
gram. Unfortunately, there is no general way of finding
this program, due to lack of an upper bound on its run-
time [Sol64, Kol65, LV97].

However, there is a theoretically “best” way of taking
runtime into account [Lev73, Sch02]. This is the ba-
sis of previous work on optimal search for simple net-
works [Sch95, Sch97], which used an assembler-like uni-
versal network encoding language (NEL) and Speed Prior-
based search [Sch02] (related to Levin’s Universal Search

[Lev73]), to quickly find low-complexity weight matrices
with excellent generalization performance.

In related work, in the context of neuroevolution [Gru92,
GS07, BKS09], less general NELs have been used to en-
code network parameters indirectly in symbol strings which
are evolved using a genetic algorithm. Like the early work
[Sch95, Sch97], these approaches allow short descriptions
to specify networks of arbitrary size.

Here we define a NEL whose instructions are bit repre-
sentations of Fourier series coefficients, and network weight
matrices are computed by applying inverse Fourier-type
transforms to the coefficients. This not only yields continu-
ity (a small change to any coefficient changes all weights by
a small amount) but also allows the algorithmic complexity
of the weight matrix to be controlled by the number of co-
efficients. As frequency domain representations decorrelate
the signal (weight matrix), the search space dimensionality
can be reduced in a principled manner by discarding high-
frequency coefficients, as is common lossy image coding
(note that ignoring high frequencies in the initial phase is en-
couraged by observations of factorial redundancy in trained
weight matrices [Rad93]). Therefore, the search for a good
weight matrix can be performed systematically starting with
smooth weight matrices containing only low frequencies,
and then successively adding higher frequencies.

Encoding in the frequency domain also means that the
size of the program is independent of the size of the net-
work it generates, so that networks can be scaled to high-
dimensional problems, such as vision, since a very short pro-
gram consisting of frequency coefficients, each encoded by
a few bits, can compute huge weight matrices. While this
is the main motivation for most indirect network encoding
schemes, here we consider indirect encoding in the opposite
direction: given a problem for which a relatively small net-
work solution is known, is there a short encoding that allows
the network space to be searched exhaustively?

The next section describes the neural network encoding
scheme in detail and the variant of universal search used to
find solutions. We then present experimental results in three
test domains, showing how some of the solutions turn out
to be surprisingly simple, as they are computable by fairly
short, network-computing bit strings.

Published by Atlantis Press, © the authors
 1

(a)

(b)

Figure 1: DCT network representation. The coefficients
are selected according to their order along the second diago-
nals, going from upper-left corner to the bottom right corner.
Each diagonal is filled from the edges to the center starting
on the side that corresponds to the longer dimension. (a)
Shows and example of the kind of weight matrix (right) that
is obtained by transforming the full set of coefficients (left).
The grayscale levels denote the weight values (black = low,
white = high). (b) Shows the weight matrix when only the
first four coefficients from (a) are used. The weights in (b)
are more spatially correlated than those in (a).

Searching in Compressed Network Space
The motivation for representing weight matrices as fre-
quency coefficients is that by spatially decorrelating the
weights in the frequency domain it might be possible to dis-
card the least significant frequencies, and thereby reduce the
number of search dimensions. This in turn makes it possi-
ble to search “universally” from small networks that can be
represented by few coefficients, to larger networks requiring
more complex weight matrices.

The next two sections describe how the networks are rep-
resented in the frequency domain using the Discrete Cosine
Transform (DCT), and the version of universal search that is
used to systematically find solutions to the experiments that
follow.

DCT Network Representation
All networks are fully connected recurrent neural networks
(FRNNs) with i inputs and single layer of n neurons where
some of the neurons are treated as output neurons. This ar-
chitecture is general enough to represent e.g. feed-forward
and Jordan/Elman networks, as they are just sub-graphs of
the FRNN.

An FRNN consists of three weight matrices: an n × i
input matrix, I, an n × n recurrent matrix, R, and a bias
vector t of length n. These three matrices are combined
into one n× (n+ i+ 1) matrix, and encoded indirectly us-
ing c ≤ N DCT coefficients, where N is the total number
of weights in the network. Figure 1 illustrates the relation-
ship between the coefficients and weights for a hypothetical
4 × 6 weight matrix. The left side of the figure shows two

Algorithm 1: Universal Network Search (r)

for x← 1 to 22r

do1
for n← nmin to x do2

for b← 1 to x do3
for c← 1 to MIN(b,N) do4

if MAX(n,b,c)=x then5

for s← 1 to 2b do6
D← DECODE(n,c,BINARY(s))7
network← INVERSEDCT(D)8
if SOLVED?(EVALUATE(network)) then9

return ENCODE(r,n,b,BINARY(s))10

end11

weight matrix encodings that use different numbers of coef-
ficients {C1, C2, . . . , Cc}. Generally speaking, coefficient
Ci is considered to be more significant (associated with a
lower frequency) than Cj , if i < j. The right side of the
figure shows the weight matrices that are generated by ap-
plying the inverse DCT transform to the coefficients. In the
first case (figure 1a), all of the 24 coefficients is used, so that
any possible 4 × 6 weight matrix can be represented. The
particular weight matrix shown was generated from random
coefficients in [−20, 20]. In the second case (figure 1b), each
Ci has the same value as in figure 1a, but the full set has been
truncated to only the four most significant coefficients.

The more coefficients, the more high frequency informa-
tion that is potentially expressed in the weight matrix, so that
the weight values become less spatially correlated—large
changes can occur from one weight to its neighbors. As c
approaches one, the matrix becomes more regular, with only
gradual, correlated, changes in value from weight to weight.

Universal Network Search
In order to search the space of networks universally, a strict
total ordering must be imposed on the possible DCT encod-
ings. We accomplish this by representing the c coefficients
using a total of b bits, and iterating over all possible bit-
strings using Universal Network Search (UNS), described in
Algorithm 1. The outer-most loop imposes an upper limit,
x, for n, b and c. The next three loops examine all combina-
tions of neurons, bits and coefficients, constrained by, nmin,
the number of output units required by problem in question
(second loop), and, N , the total number of weights in the
network. Each of the 2b bit-strings (third loop) is partitioned
in b different ways (fourth loop); each partitioning denot-
ing a different number of coefficients. If (b mod c) 6= 0
then the modulo is distributed into the coefficients from the
beginning. For example, if b = 3, each of the 23 = 8 possi-
ble bit-strings has three possible partitionings: (1) only one
coefficient, C1, is represented using all three bits, (2) two
coefficients, C1 using two bits, and C2 using the remaining
bit, and (3) three coefficients, C1, C2 and C3, each using
one bit. The set a values that a coefficient C can take on is
determined by dividing [−α, α] ∈ < into 1/(2`(C)−1) inter-
vals, where `(C) is the number of bits used to represent C,
and α is just a scaling factor. For example, if `(C) = 2 and

Published by Atlantis Press, © the authors
 2

Figure 2: Network representation and encoding. A network with two neurons (right) is obtained by applying the inverse
DCT of the matrix (middle), where three of the coefficients (C1, C2, C3) are non-zero, in this example. The weight matrix can
be encoded (left) by a total of 12 bits, five for the coefficient values, and seven for the “meta” information: three bits for the
precision, p, which determines the size of the bit-fields representing n, the number of neurons, and c, the number of coefficients.
This is all of the information needed to reconstruct (decode) the complete network.

α = 1.0, then the set of valuesC can take is {−1,− 1
3 ,

1
3 , 1}.

Finally, in the inner-most loop, each of the 2b networks
specified by each unique (n, b, c) is decoded into a coef-
ficient matrix D, which is then transformed into a weight
matrix via the inverse DCT. The search terminates if either
x > 22r

or a network that solves the problem is found, in
which case the successful network is encoded as described
in figure 2, and returned.

To completely describe a network, simply storing the bit-
string b is not sufficient, the number of neurons, n, and coef-
ficients, c, must be encoded as well. To encode this informa-
tion in minimal way, we first encode the number of bits that
will be used to represent the parameters and then store the
parameters with the fixed number of bits. The bit-string that
completely describes the network consists of the following
fields (see figure 2): r bits represent the bit precision, p, of
the n and c fields, p bits each for n and c, and b bits for the
actual coefficient values, b ≥ c, for a total of r+2p+ b bits,
where p ≤ 2r. For the example 001 01 10 10011, shown in
figure 2, the first field has size r = 3, and a decimal value of
2, so that n and c are represented by 2 bits, with values of 2
and 3, respectively, meaning that the network has 2 neurons,
where 3 coefficients are described with by the last five bits
10011.

A universal search over all possible bit-strings would
needlessly examine a large number of invalid bit-strings
(having b < c). Therefore, we use Algorithm 1 which con-
strains the search to only valid, decodable strings, and is
therefore an instance of Practical Universal Search [SS10].

Experimental Results
Universal Network Search was tested one three tasks:
Markovian and non-Markovian pole balancing, the long
term dependency T-maze, and the ball throwing task. In all
experiments, the scaling factor, α, was set to 20, and the
number of bits, r, used to represent the precision of n and c
was set to three, which means that the search can continue
up to networks with 223

= 256 neurons, more than enough
for the tasks in question. In each task, the encoding scheme
described in the previous section is used to quantify the com-
plexity of network solutions, and is indicated by the “Total
Bits” column in the tables.

Table 1: Pole balancing results. Each row describes the
minimal (1-neuron) network solution for each task, the num-
ber of evaluations that UNS required to find it, and the total
number of bits required to encode it. Notice that just 8 evalu-
ations are needed to find a solution to the single pole Markov
task.

Task b c Eval. Total Bits

1 pole Markov 2 2 8 7
1 pole non-Markov 6 3 290 13
2 poles Markov 16 6 773,070 25
2 poles non-Markov 17 5 1,229,012 26

Pole Balancing
Pole balancing (figure 3a) is a standard benchmark for learn-
ing systems. The basic version consists of a single pole
hinged to a cart, to which a force must applied in order to
balance the pole while keeping the cart within the bound-
aries of a finite stretch of track. By adding a second pole
next to the first, that task becomes much more non-linear and
challenging. A further extension is to limit the controller to
only have access to the position of the cart, and the angle
of the pole(s), and not the velocity information, making the
problem non-Markovian (see [Wie91] for setup and equa-
tions of motion). The task is considered solved if the pole(s)
can be balanced for 100,000 time steps.

Table 1 summarizes the results for the four most com-
monly used versions of the task. For the Markov single
pole task, a successful network with just one neuron whose
weights are represented by 2 DCT coefficients is found after
just 8 evaluations. This result shows how simple the sin-
gle pole balancing is: the single neuron, which solves it has
monotonically distributed weights. Non-Markovian single
pole balancing increases complexity of the task only slightly.

For the two-pole versions, 16 (17 for non-Markovian
case) bits are required to solve the problem using a single
neuron. Notice that the solution to the Markovian 2-pole
task, requiring 8 weights (6 input + 1 recurrent + 1 thresh-
old), has been compressed to 6 parameters, C1, ..C6. The
non-Markovian 2-pole network has 5 weights and 5 coeffi-
cients were used, meaning that in this task it does not DCT

Published by Atlantis Press, © the authors
 3

(a) Pole balancing (b) T-maze (c) Ball throwing

Figure 3: Evaluation tasks. (a) Pole balancing: the goal is to apply a force F to the cart such that the pole(s) do not fall down.
(b) T-maze: the agent must travel down the corridor remembering the signal X which indicates the location of the goal. The
length of the corridor is variable. (c) Ball throwing: the ball attached to the end of the arm must be thrown as far as possible by
applying a torque to the joint and then releasing the ball.

Table 2: T-maze results. The table shows the two networks
with the shortest bit descriptions, found by UNS. The check
marks in the “T-maze length” column indicate the corridor
lengths the network was able to solve. Note that the seven
neuron network is found before the four neuron network
since it requires fewer bits to encode (19 vs. 21).

T-maze length
n b c Eval. 5 50 1000 Total Bits

7 10 10 85, 838
√ √ √

19
4 12 11 306, 352

√
– – 21

compress the weight matrix. In the other words, the num-
ber of bits per coefficient is the restriction which makes the
exhaustive search possible.

Long Term Dependency T-maze
The T-maze task is a discrete non-Markovian problem con-
sisting of a corridor of n rooms with a start state S at one end
and a T-junction at the opposite end (figure 3b). Starting in
S, the objective is to travel down to the end of the corridor
and go either north or south at the T-junction depending on
a signal X received in S indicating the location of the goal
G. In order to chose the correct direction at the junction, the
network must remember X for at least n time-steps.

The agent always sees a binary vector of length three. At
the start, the observation is either 011 if the goal is to the
north, or 110 if it is to the south. In the corridor, the agent
sees 101 and at the junction it sees 010. The agent RNN has
three output units, one for each of the possible actions (go
east, north or south), where the action corresponding to the
unit with the highest activation is taken at each time-step.
The agent receives a reward of −0.1 if tries to go north or
south in the corridor, or go east or in wrong direction at the
T-junction, and a reward of 4.0 if it achieves the goal.

All agents are initially evaluated on a corridor of length
5. If the agents achieve the goal, they are also evaluated in
corridors of length 50 and 1000 in order to test the general-
ization ability.

Table 2 shows the results. A four neuron RNN described
with 21 bits can achieve the goal in a corridor of length of

Table 3: Ball throwing results. The table shows the first
three network near optimal networks found by UNS (all net-
work have two neurons). The d column indicates the dis-
tance, in meters, the ball was thrown by each network using
the strategy indicated in the first column (compare to the dis-
tance, dopt, of the corresponding optimal controller).

strategy b c Eval. d [m] dopt[m] Total Bits

fwd 4 4 70 4.075 5.391 11
bwd-fwd 8 8 2516 5.568 5.391 17
bwd-fwd 9 9 5804 9.302 10.202 20

5. A network with seven neurons described with 19 bits can
find the goal in a maze of any length (the outputs of the
network become stable while in the corridor and the input
pattern at the end causes a recall of the goal position stored
in the network activation). The 7-neuron network was found
before the 4-neuron network because it requires fewer bits
and coefficients.

Ball Throwing
In the ball throwing task (figure 3c), the goal is to swing
a one-joint artificial arm by applying a torque to the joint,
and then releasing the ball such that it is thrown as far as
possible. The arm-ball dynamical system is described by:

(θ̇, ω̇) =
(
ω,−c · ω︸︷︷︸

friction

− g · sin(θ)
l︸ ︷︷ ︸

gravity

+
T

m · l2︸ ︷︷ ︸
torque

)

where θ is the arm angle, ω its angular speed, c = 2.5s−1

the friction constant, l = 2m the arm length, g = 9.81ms−2,
m = 0.1kg the mass of the ball, and T the torque applied
(Tmax = [−5Nm, 5Nm]). In the initial state, the arm hangs
straight down (θ = 0) with the ball attached to the end. The
controller sees (θ, ω) at each time-step and outputs a torque.
When the arm reaches the limit θ = ±π/2, all energy is
absorbed (ω = 0). Euler integration was used with a time-
step of 0.01s.

In the experiments, we compare the networks found by
Algorithm 1 with two optimal control strategies. The first

Published by Atlantis Press, © the authors
 4

æ æ

æ

æ æ

æ
æ

æ

æ
æ æ æ

2 4 6 8 10 12
0

2

4

6

8

10

12

bits

di
st

an
ce

@m
D

forward

backward-forward

Figure 4: Ball throwing experiment. The figure plots the
distance reached by the thrown ball against the number of
bits, b, used to encode the corresponding two-neuron FRNN
weights. Each datapoint denotes the best solution for a given
b. The network with weights described with four bits al-
ready swings the arm forward and releases the ball with near
optimal timing. The network described with eight bits sur-
passes the optimal forward swing strategy by using a slight
backward swing. Nine bits produce a network which swings
backward and forward and releases the ball at nearly opti-
mal time. The distances for the two optimal strategies are
marked with dashed lines.

applies the highest torque to swing the arm forward, and re-
leases the ball at the optimal angle (which is slightly below
45 degrees, because the ball is always released above the
ground). The second, more sophisticated, strategy first ap-
plies a negative torque to swing the arm backwards up to the
maximum angle, and then applies a positive torque to swing
the arm forward, and release the ball at the optimal angle of
43.03 degrees. The optimal distances are 5.391m for the for-
ward swing strategy, and 10.202m for the backward-forward
swing strategy.

The results are summarized in Table 3. In 70 evaluations,
UNS finds a network with four single-bit coefficients, de-
scribed by a total of 11 bits, that can throw the ball within
almost meter of the optimal forward-swing distance. A more
complex 17-bit network is found at evaluation 2516 that
uses a slight backward-forward strategy to cross the 5.391m
boundary. And finally after 5804 evaluations, a 20-bit net-
work is found that implements a nearly optimal backward-
forward swing strategy. Figure 4 shows graphically how the
performance progresses as the number of bits, b, represent-
ing the coefficient values is increased.

Discussion and Future Directions
The experimental results revealed that, using our approach,
the solution networks to some widely used control learning
benchmarks are actually quite simple, requiring very short
descriptions. However, the question remains whether or not
the compressed representation improves search efficiency?
In order to quantify the advantage gained by searching for
weights indirectly in coefficient space, we compared the per-
formance of random search in weight space against random

æ

æ

æ

æ

æ

æ

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

no. of coefficients

so
lu

tio
n

pr
ob

ab
ili

ty

Figure 5: Coefficient search vs. direct weight search.
The curve shows the probability of finding a solution to the
Markov single-pole balancing task within 100 random sam-
ples of coefficient space, defined by different numbers of
coefficients (calculated of over 1000 runs). The horizon-
tal dashed line at 0.24 indicates the probability of finding
a solution by sampling the 6-dimensional weight space di-
rectly. Searching for coefficients is more reliable searching
weights, for this task, when the number of coefficients is less
that five.

search in DCT coefficient space.
Figure 5 shows the results for this comparison in the

Markovian single-pole balancing task. Each data-point de-
notes the probability of finding a successful six-weight neu-
ral network (the same architecture that solved the task in
Table 1) within 100 random samples, for each number of
coefficients. The dashed horizontal line indicates the prob-
ability (p = 0.24) of finding such a network by randomly
sampling the six-dimensional weight space directly. A net-
work represented by just one coefficient is too simple (all
weights are equal), and cannot solve the task (p = 0). For
two, and three coefficients, the task is solved very reliably
(p > 0.9). As the dimensionality of the coefficient space
approaches that of the weights, most of the sampled weight
matrices are unnecessarily complex, and, consequently, the
probability of finding a solution at random declines rapidly,
and falls below the baseline for five and six coefficients (i.e.
no compression). This result shows that, on this particular
task, just searching the frequency domain without compres-
sion only makes the problem harder. It remains to be seen
whether compression has a similar profile for all problems,
such that there is a sweet-spot in a number of coefficients
necessary to represent a successful network. However, is
seems plausible that, just as with natural signals (e.g. im-
ages, video, sound, etc.) most of the energy in useful weight
matrices is concentrated in the low frequencies.

In these preliminary experiments, we have focused on
benchmark problems for which small network solutions are
known to be sufficient. And we have made the implicit
assumption that such solutions will have spatially corre-
lated weights. It is possible that, for each task examined
here, there exists a permutation in the weight ordering for
which the only solutions are those with spatially uncorre-

Published by Atlantis Press, © the authors
 5

lated weights, i.e. requiring the full set of coefficients. How-
ever, we have made no attempt to predefine amenable weight
orderings, and, ultimately, the potential of this approach
lies in providing compact representations for large networks,
such as those required for vision, where many thousands of
inputs have a natural, highly correlated ordering.

In the current implementation, input, recurrent, and bias
weights are all combined in a single matrix. For networks
with more layers, it may be desirable to specify a separate
set of coefficients for each layer, so that the complexity of
each matrix can be controlled independently. Also, the way
that bits are currently allocated to each coefficient may be
too restrictive. A better approach might be to search all par-
titionings of the bit-string b, instead of roughly according
to (b mod c), such that the precision of each coefficient is
less uniform. For example, fewer bits could be assigned to
the lowest frequencies, thereby freeing up more bits for the
higher frequencies where more resolution may be needed.

The Universal Network Search algorithm was motivated,
in part, by the goal of measuring the complexity of well-
known test problems by finding minimal solutions, and
made possible because of the small number of bits required
to encode the DCT representation. While there is a practi-
cal limit on number of bits that can be searched exhaustively
(e.g. 32), any, more scalable, optimization method can be
applied to search larger numbers of coefficients. Immedi-
ate future work will use the indirect DCT network repre-
sentation in conjunction with evolutionary methods to grow
large-scale networks vision-capable robots.

Acknowledgments
The research was supported by the STIFF EU Project (FP7-
ICT-231576) and partially by the Humanobs EU Project
(FP7-ICT-231453). The authors would like to thank Tom
Schaul for extensive consultations.

References

[BKS09] Zdeněk Buk, Jan Koutnı́k, and Miroslav
Šnorek. NEAT in HyperNEAT substituted with
genetic programming. In International Confer-
ence on Adaptive and Natural Computing Al-
gorithms (ICANNGA 2009), 2009.

[DDWA91] S. Dominic, R. Das, D. Whitley, and C. Ander-
son. Genetic reinforcement learning for neural
networks. In Proceedings of the International
Joint Conference on Neural Networks (Seat-
tle, WA), pages 71–76. Piscataway, NJ: IEEE,
1991.

[Gru92] Frederic Gruau. Cellular encoding of genetic
neural networks. Technical Report RR-92-21,
Ecole Normale Superieure de Lyon, Institut
IMAG, Lyon, France, 1992.

[GS07] Jason Gauci and Kenneth Stanley. Generating
large-scale neural networks through discover-
ing geometric regularities. In Proceedings of
the Conference on Genetic and Evolutionary
Computation, pages 997–1004, New York, NY,
USA, 2007. ACM.

[Kol65] A. N. Kolmogorov. Three approaches to the
quantitative definition of information. Prob-
lems of Information Transmission, 1:1–11,
1965.

[Lev73] L. A. Levin. Universal sequential search prob-
lems. Problems of Information Transmission,
9(3):265–266, 1973.

[LV97] M. Li and P. M. B. Vitányi. An Introduction
to Kolmogorov Complexity and its Applications
(2nd edition). Springer, 1997.

[Rad93] Nicholas J. Radcliffe. Genetic set recombina-
tion and its application to neural network topol-
ogy optimisation. Neural Computing and Ap-
plications, 1(1):67–90, 1993.

[Ris78] J. Rissanen. Modeling by shortest data descrip-
tion. Automatica, 14:465–471, 1978.

[Sch95] J. Schmidhuber. Discovering solutions with
low Kolmogorov complexity and high general-
ization capability. In A. Prieditis and S. Rus-
sell, editors, Proceedings of the Twelfth In-
ternational Conference on Machine Learning
(ICML), pages 488–496. Morgan Kaufmann
Publishers, San Francisco, CA, 1995.

[Sch97] J. Schmidhuber. Discovering neural nets
with low Kolmogorov complexity and high
generalization capability. Neural Networks,
10(5):857–873, 1997.

[Sch02] J. Schmidhuber. The Speed Prior: a new
simplicity measure yielding near-optimal com-
putable predictions. In J. Kivinen and R. H.
Sloan, editors, Proceedings of the 15th Annual
Conference on Computational Learning The-
ory (COLT 2002), Lecture Notes in Artificial
Intelligence, pages 216–228. Springer, Sydney,
Australia, 2002.

[Sol64] R. J. Solomonoff. A formal theory of inductive
inference. Part I. Information and Control, 7:1–
22, 1964.

[SS10] Tom Schaul and Jürgen Schmidhuber. Towards
a practical universal search. In Submitted to the
Third Conference on Artificial General Intelli-
gence, 2010.

[WB68] C. S. Wallace and D. M. Boulton. An informa-
tion theoretic measure for classification. Com-
puter Journal, 11(2):185–194, 1968.

[Wie91] Alexis Wieland. Evolving neural network con-
trollers for unstable systems. In Proceedings of
the International Joint Conference on Neural
Networks (Seattle, WA), pages 667–673. Pis-
cataway, NJ: IEEE, 1991.

Published by Atlantis Press, © the authors
 6

