
Efficient Constraint-Satisfaction in Domains with Time

Perrin G. Bignoli, Nicholas L. Cassimatis, Arthi Murugesan

Department of Cognitive Science

Rensselaer Polytechnic Institute

Troy, NY 12810

{bignop, cassin, muruga}@rpi.edu

Abstract

Satisfiability (SAT) testing methods have been used
effectively in many inference, planning and constraint
satisfaction tasks and thus have been considered a
contribution towards artificial general intelligence.
However, since SAT constraints are defined over atomic
propositions, domains with state variables that change over
time can lead to extremely large search spaces. This poses
both memory- and time-efficiency problems for existing
SAT algorithms. In this paper, we propose to address these
problems by introducing a language that encodes the
temporal intervals over which relations occur and an
integrated system that satisfies constraints formulated in this
language. Temporal intervals are presented as a compressed
method of encoding time that results in significantly smaller
search spaces. However, intervals cannot be used efficiently
without significant modifications to traditional SAT
algorithms. Using the Polyscheme cognitive architecture,
we created a system that integrates a DPLL-like SAT-
solving algorithm with a rule matcher in order to support
intervals by allowing new constraints and objects to be
lazily instantiated throughout inference. Our system also
includes constraint graphs to compactly store information
about temporal and identity relationships between objects.
In addition, a memory retrieval subsystem was utilized to
guide inference towards minimal models in common sense
reasoning problems involving time and change. We
performed two sets of evaluations to isolate the
contributions of the system‟s individual components. These
tests demonstrate that both the ability to add new objects
during inference and the use of smart memory retrieval
result in a significant increase in performance over pure
satisfiability algorithms alone and offer solutions to some
problems on a larger scale than what was possible before.

Introduction

Many AI applications have been successfully framed as
SAT problems: planning (Kautz and Selman 1999),
computer-aided design (Marques-Silva and Sakallah 2000),
diagnosis (Smith and Veneris 2005), and scheduling
(Feldman and Golumbic 1990). Although SAT-solvers
have successfully handled problems with millions of
clauses, tasks that require an explicit representation of time
can exceed their capacities.
 Adding a temporal dimension to a problem space has the
potential to greatly expand search space sizes because SAT
algorithms propositionalize relational constraints. The most

direct way to incorporate time is to have a copy of each
state variable for every time point over which the system
reasons. This increases the number of propositions by a
factor equal to the number of time points involved. Since
SAT algorithms generally become slower as the size of a
problem increases, adding a temporal dimension to even
relatively simple problems can make them intractable.
 Although problems with time require more space to
encode, the true expense of introducing time stems from
the additional cost required to find a SAT solution.
Consider a task that requires the comparison of all the
possible ways that a car can visit three locations in order. If
the problem has no reference to time points, there is only
one solution: the car just moves from a to b to c. On the
other hand, there are clearly more possibilities, since the
car could potentially move or not move at every time.
Compared to other SAT-solvers, LazySAT (Singla and
Domingos 2006), which lazily instantiates constraints, is
less affected by the increased memory demands of larger
search spaces. Unfortunately, lazy instantiation will not
increase the tractability of larger problems with respect to
runtime.
 There is, however, a more efficient way of representing
time. Since it is unlikely that the truth value of a
proposition will change at every time point, temporal
intervals can be used to denote segments of contiguous
time points over which its value is constant. This practice
alleviates the need to duplicate all propositions at every
time point for most problem instances, thus significantly
reducing the search space size. Intervals also mitigate the
arbitrary granularity of time because they are continuous
and scale independent.
 However, existing SAT solvers cannot process intervals
efficiently because they do not allow new objects to be
introduced during the course of inference. It is clearly
impossible to know exactly which temporal intervals will
be required. Therefore, every possible interval must be
defined in advance. Since unique intervals can be
defined over n times, there would be little advantage to use
them with current searching methods.
 To capture the benefits of SAT while supporting the use
of intervals, we created an integrated system that combines
a DPLL-like search with several specialized forms of
inference: a rule matcher, constraint graphs, and memory
retrieval. Rule matching allows our system to both lazily
instantiate constraints and introduce new objects during

2
)2)(1(nn

Published by Atlantis Press, © the authors
 1

inference. Constraint graphs compactly store temporal and
identity relationships between objects. Memory retrieval
supports common sense reasoning about time. Although
SAT has previously been applied to planning (Shanahan
and Witkowski 2004) and reasoning (Mueller 2004) with
the event calculus, we present a novel approach.

Language

We have specified a language that can express
relationships between objects at different points in time.
This language incorporates temporal intervals and a
mechanism for introducing new objects during inference.
For example, in path planning tasks, it is often useful to
have a condition such as: If at location p1 and must be at
location p2, which is not adjacent to p1, then move to some
location px that is adjacent to p1 at the next possible time.
We write this constraint as:

Note that we prefix arguments with a „?‟ to denote
variables. Variables permit this one constraint to apply to
all locations in the system. Additionally, we can assign
weights to constraints as a measure of their importance.
Because this constraint holds for any path, it is given an
infinite weight to indicate that it must be satisfied.
 Formally, constraints have the form
 , where w is a positive rational
number, m ≥ 0 and n ≥ 1. Ai and Cj are first order literals.
Literals have the form P(arg1, …, argn), where P is a
predicate, argi is a term, and argn must be a time point or
interval. Terms that are prefixed with a „?‟ are variables;
others are constant “objects.” A grounded predicate is one
in which no term is a variable. Predicates specify relations
over the first n-1 terms, which hold at time argn. There is a
special type of relation called an attribute. Attributes are
predicates, P, with three terms, o, v, and t, such that only
one relation of the form P(o, v, t) holds for each o at every
t. The negation of a literal is expressed with the ¬ operator.
Every literal is mapped to a truth value.
 If all of the literals in a constraint are grounded, then the
constraint itself is grounded. Only grounded constraints
can be satisfied or broken, according to the truth value of
its component literals. A constraint is broken iff every
antecedent literal is assigned to true and every consequent
literal is assigned to false. The cost of breaking a constraint
is given by w, which is infinite if the constraint is hard.
 Some predicates and objects are included in the
language. For instance, Meets, Before, and Includes are
temporal relations that are similar to the predicates in
Allen‟s interval calculus (Allen 1981). We reserve a set of
objects of the form {t1, …, tn}, where n is the number of
times in the system. This set is known as the native times.
Another time, E, denotes eternity and is used in literals
whose assignments do not change over time.

 A model of a theory in this language consists of a
complete assignment, which is a mapping of every literal
to a truth value. Valid models are those such that their
assignment permits all hard constraints to be satisfied. All
models have an associated cost equal to the cost of its
broken constraints. Each theory has many valid models,
but it is often useful to find one of the models with the
minimum cost. For instance, this process can perform
change minimization, a form of commonsense reasoning
motivated by the frame problem (Shanahan 1997).

System Architecture

We created an integrated system using the Polyscheme
cognitive architecture (Cassimatis 2002) in order to
efficiently solve problems with time. This approach
allowed us to glean the benefits of SAT while capitalizing
on the properties of specialized forms of inference. It is
easiest to describe how our system works by framing it as a
DPLL-like search. DPLL (Davis, Logemann et al. 1962)
performs a branch-and-bound depth first search that is
guaranteed to be complete for finite search spaces. The
algorithm searches for the best assignment by making
assumptions about the literals that appear in its constraint
set. An assumption consists of selecting an unassigned
literal, setting it to true or false, and then performing
inference based on this assignment. When necessary, the
search backtracks to previous decision points to explore the
ramifications of making the opposite assumption.
 The DPLL-FIRST procedure in Algorithm 1 takes a set
of constraints, c, as input and outputs an assignment of
literals to truth values that minimizes the cost of broken
constraints. In the input constraint set, there must be at
least one fully grounded constraint with a single literal.
Such constraints are called facts. Within the DPLL-FIRST
procedure, several data structures are declared and passed
to DPLL-RECUR, which is illustrated in Algorithm 2.
First, there is a structure, assign, which stores the current
assignment of literals to truth values. The facts specified in
the input are stored in assign with an assignment that
corresponds to the valence of the fact‟s literal. Second,
there is a queue, q, which stores the literals that have been
deemed relevant by the system in order to perform
inference after the previous assumption. At the beginning,
q contains the facts in the input. Third, b stores the best
total assignment that has been found so far. Fourth, the cost
of b is stored in o. Initially, b is empty and o is infinite.

Algorithm 1. DPLL-FIRST(c):
 return DPLL-RECUR(c, assign, q, o, b)

 Each time DPLL_RECUR is called, it performs an
elaboration step that infers new assignments based on the
current assumption. Initially, when there is no assumption,
the elaboration step attempts to infer new information from
the constraints specified in the input. After elaboration, the
current assignment is examined to determine if one of the

),?,1(?),?,1(?

),2?,1(?)2?,2?,(?)1?,1?,(?

EtxtMeetsEpxpAdjacent

EppSametpxLocationtpxLocation

nm CCwAA 11)(

Published by Atlantis Press, © the authors
 2

three termination conditions is met. The first condition is if
the assignment is contradictory because the same literal has
been assigned to both true and false. The second condition
is if the cost of the current assignment exceeds the lowest
cost of a complete assignment that has been discovered in
previous iterations. Since new assignments can never
reduce the total cost, it is unnecessary to continue
searching. The third condition is if the current assignment
is complete. In all of these cases, the search backtracks to a
previous assumption and investigates any remaining
unexplored possibilities. Afterwards, the search selects an
unassigned literal and creates two new branches in the
search tree: one where the literal is assumed to be true and
one where it is assumed to be false. DPLL-RECUR is then
invoked on those subtrees and the assignment from the
branch with the lower cost is returned.

Algorithm 2. DPLL-RECUR(c, assign, q, o, b)

 call ELABORATION(c, assign, q)
 if Contradictory(assign) then
 return Fail
 else if Cost(assign) > o
 return Fail
 else if Complete(assign)
 return assign
 end if
 u ← next element of q
 newassign ← assign with u assigned to true
 b1 ← call DPLL-RECUR(c, newassign, o, b)
 newassign ← assign with u assigned to false
 b2 ← call DPLL-RECUR(c, newassign, o, b)
 if Cost(b1) < Cost(b2) then
 return b1
 else
 return b2
 end if

 The elaboration step in basic DPLL is called unit-
propagation. Unit-propagation examines the current
assignment to determine if there are any constraints that
have exactly one literal unassigned. If such constraints
exist and exactly one assignment (i.e., true or false) for that
literal satisfies the constraint, then DPLL makes that
assignment immediately instead of through a later
assumption. Our system augments this basic technique by
introducing several more specialized forms of inference.
 To understand the importance of elaboration, consider
that all of the best available complete SAT-solvers are
based on some version of DPLL (Moskewicz, Madigan et
al. 2001; Een and Sorensson 2005). DPLL is so effective
because its elaboration step eliminates the need to explore
large numbers of unnecessary assumptions. It is more
efficient to infer assignments directly rather than to make
assumptions, because each assumption is equivalent to
creating a new branch in DPLL‟s abstract search tree.
Elaboration also allows early detection of contradictions in
the current assignment.

 Despite its elaboration step, DPLL is unable to handle
the large search spaces that occur when time is explicitly
represented. The goal of our approach is to improve
elaboration by using a combination of specialized
inference routines. Previous work (Cassimatis, Bugjaska et
al. 2007) has outlined the implementation of SAT solvers
in Polyscheme. Following that approach, we implemented
DPLL using Polyscheme‟s focus of attention. One call to
DPLL-RECUR is implemented by one focus of attention in
Polyscheme. Logical worlds are used to manage DPLL
assumptions. For each assumption, an alternative world is
created in which the literal in question is either true or
false. Once Polyscheme focuses on an assumption literal, it
is elaborated by polling the opinions of several specialists.
These specialists implement the specialized inference
routines upon which our system relies. One of these
specialists, the rule matcher, lazily instantiates grounded
constraints that involve the current assumption. The
assignment of a literal is given by Polyscheme‟s final
consensus on the corresponding proposition. This
elaboration constitutes the main difference between our
system and standard DPLL.
 Our elaboration step, which is illustrated in Algorithm 3,
loops over the literals that have been added to the queue
because their assignments were modified by previous
inference. Two procedures are performed on each of these
literals. First, a rule matcher is used to lazily instantiate
grounded constraints from relevant variable constraints
provided in the input. Relevant constraints are those that
contain a term that corresponds to the current literal in
focus. These constraints are “fired” to propagate truth
value from the antecedent terms to the consequent terms.
Newly grounded literals, which may contain new objects,
are introduced during this process. Any such literals are
added to the assignment store and the queue.
 The second procedure involves formulating an
assignment for the current proposition based on
suggestions from the various components of the system.
For instance, the temporal constraint graph is queried here
in the case that the proposition being examined describes a
temporal relationship. Likewise, the identity constraint
graph would be queried if the examined proposition was an
identity relationship. In the extended system, this is the
step at which the memory retrieval mechanism would be
utilized. These opinions are combined with the old
assignment of the proposition to produce a new
assignment. If the new assignment differs from the old one,
the literal is placed back on the queue.

Algorithm 3. ELABORATION(c, assign, q):

 while q is not empty do
 l ← the next element in q
 ris ← call Match(l, c, q)
 delta ←
 for each ri in ris do
 delta ← delta call Propagate(ri, assign)
 end for

Published by Atlantis Press, © the authors
 3

 rs ← the rule system‟s opinion on l
 tc ← the temporal constraint graph‟s opinion on l
 ic ← the identity constraint graph‟s opinion on l
 mr ← the memory retrieval system‟s opinion on l
 c ← call Combine(rs, tc, ic, mr)
 if c ≠ l‟s assignment in assign then
 delta ← delta l
 end if
 q ← q delta
 end while
 return

Rule Matching Component

Lazy instantiation is efficient because it avoids the creation
of constraints that do not need to be considered to produce
an acceptable assignment. We accomplish lazy
instantiation by treating constraints with open variables as
templates that can be passed to a rule matcher. The rule
matching component (RMC) attempts to bind the
arguments of the last dequeued literal to variables in the
constraint rules. A binding is valid if it allows all variables
in the antecedent terms of a constraint to be bound to
objects in the arguments of literals that are stored in the
system‟s memory. All valid bindings are evaluated as
constraints by propagating truth value from the antecedents
to the consequents. A constraint is considered broken only
if the grounded literals in its antecedent terms have been
assigned to true and the propositions in its consequent
terms have been assigned to false.
 A simple example will illustrate the binding process. Let
the literal currently being assigned be .
If
appears as a constraint, then the following fully grounded
instance is created:

In this case, ?x binds to car1, ?y binds to road, ?t1 binds to
t1, and ?t2 binds to a new object, tnew. If Location(car1,
road, t1) is assigned to true and Location(car1, road,
t_new) is later assigned to false, then any models that
contain that assignment will accrue a cost of 10.

Temporal Constraint Graph Component

As the number of objects in a problem instance increase, so
do the number of literals and constraints. For instance,
when time objects are introduced, it is often necessary to
know how those times are ordered. If there are n times in
the system, approximately literals are required to
represent all of the values of a binary relation over those
times. Usually, only a small portion of these literals
provide useful information for solving the problem. Instead
of eagerly encoding all temporal relations, we created a
component that could be queried on demand to determine
if a given relation holds according to the current
knowledge of the system. This component represents
relations in graphical form.

 Using a graph enables the system to derive new entailed
relations without storing them explicitly as propositions.
All of the fundamental temporal relationships described by
Allen can be represented in the following way. Whenever a
literal that involves such a relationship is encountered, the
temporal constraint graph (TCGC) decomposes the time
object arguments into three parts: the start point, the
midpoints, and the end point. These parts form the nodes of
the graph. Edges are created between two nodes in the
graph if their temporal relationship is known.
 Every interval relationship can be derived from only two
types of relationships on the parts of times: Before and
Equals. A time object‟s start point is defined to be before
its midpoints and its midpoints are before its end point. By
creating edges between the parts of different time objects,
it is possible to record relationships between the objects
themselves. For instance, to encode Meets(t1, t2, E) in the
graph, one would use the relationship: Equals(end-t1,
start-t2, E). To illustrate why the graph is an efficient way
to store this information, consider the following example.
If it is known that Meets(t1, t2, E) and Meets(t2, t3, E),
then the graph can be traversed to find Before(t1, t3, E),
among other relationships. Thus, these propositions are
stored implicitly and do not need to be assigned unless they
are present in a grounded constraint.

Identity Constraint Graph Component

The identity constraint graph component (ICGC) is similar
to the TCGC, but it handles propositions about the identity
of objects. This graph consists of nodes that represent
objects and edges that represent either equality or
inequality. By traversing the graph, it is possible to capture
the transitivity of the identity relation. Although a rule
could be used to generate the transitivity property, doing so
has the potential to drastically increase the number of
propositions over which DPLL must search.
 Another important use for the ICGC is that it can detect
inconsistencies in truth assignments to identity
propositions. Consider that the following set of identity
propositions is known: Same(a, b), Same(b, c). Then, the
proposition, ¬Same(a, c), is examined and assumed to be
true. Clearly this is inconsistent, but without including a
rule that defines the properties of identity, the system will
continue to perform inference based on these facts until an
explicit contradiction is encountered. Traversing the edges
connecting a, b, and c in the graph will indicate that this
scenario is contradictory. This information can be reported
to the system as a whole during elaboration.

Memory Retrieval Component

Systems that explicitly represent time often also have to
reason about change. However, in situations with imperfect
knowledge, reasoning about change can be difficult.
Consider the following information about the color of a
car, assuming that Location is an attribute: Color(car, red,
t1), Color(car, blue, t6), Color(car, green, t11). In between
t1 and t6 and t6 and t11, it is consistent for the car to be

)1,,1(troadcarLocation

),2?,1(?)2?,?,(?)10()1?,?,(? EttMeetstyxLocationtyxLocation

),,1(),,1()10()1,,1(EtnewtMeetstnewroadcarLocationtroadcarLocation

2

2n

Published by Atlantis Press, © the authors
 4

any color. However, in many scenarios, the car would
remain red until it was painted blue and then blue until it
was painted green. Although the world is dynamic, it also
exhibits inertia. The principle of change minimization
states that changes to particular objects are relatively
infrequent and when changes do occur, they will be salient.
It is worthwhile for a reasoning system to bet on such
recurring patterns, because doing so significantly reduces
the complexity of many problems.
 We can frame the change minimization problem as a
weighted SAT problem as follows. Given a set of attribute
literals that involve the same first term, but whose second
term changes over time, determine the minimum number
of changes required to explain the data. To this end,
constraints can be defined so that the least costly models
will be those that exhibit the smallest possible number of
attribute value changes. The memory retrieval component
(MRC) is designed to accommodate this procedure by
regulating which attribute values appear in grounded
constraints. Only attribute values with some prior evidence
in memory are considered. As an example, the car could
have been purple at t2 and brown at t3, but models that
contain such literals are automatically excluded.
 To control which values are considered, the MRC makes
a copy of each literal that encodes an attribute with a native
time index. This copy is modified to contain a time index
that corresponds to an open-ended interval. Only when
new attribute values are observed will that interval‟s
endpoints be constrained. For instance, when the system
elaborates Color(car, red, t1), a new literal Color(car, red,
t-car-red) will be introduced. Because it uses a content-
addressable retrieval system, the MRC will henceforth
report that the color of the car is likely to be red at every
time point until new information is discovered. If the literal
Color(car, blue, t6) is observed, then the literal Color(car,
blue, t-car-blue) will be introduced. Also, constraints will
be added to limit the right side of the t-car-red interval at
t6 and the left side of the t-car-blue interval at t1.
 Even with this optimization, change minimization is
expensive if performed naively, since there are
 possible transitions between n attribute values if
nothing is known about when the values hold relative to
each other. For instance, if a car is seen to be red, then
blue, then green, the naïve formulation will consider such
possibilities as a change from green to red even though this
is clearly impossible. The change detection mechanism in
the MRC utilizes the TCGC in conjunction with content-
accessible memory to significantly reduce the number of
impossible changes that are considered by the system.
When an attribute literal containing an interval is
elaborated, the only values that are adjacent in time to the
current interval will be considered. Since the intervals do
not have completely fixed endpoints, these neighboring
times can be detected by looking at what times the current
interval could possibly include. For instance, once it has
been established that there is a change between t1 and t6,
the interval created around t1 can no longer include t11, so

the location t1 will not appear as a possible previous state
of the location at t11.

Results

Our system was designed to improve the efficiency of
applying SAT-solving to problems that involve an explicit
representation of time. In order to accomplish this goal, we
used Polyscheme to implement a DPLL-like algorithm
with specialized forms of inference that permitted the
creation of new objects. The ability to introduce new
objects allowed us to use intervals to reduce the search
space of these problems.
 In order to test the level of improvement gained by the
ability to add new objects independently of other
techniques, we ran an evaluation with the memory retrieval
component deactivated. The task we selected was optimal
path planning through space. We represented this space as
a graph. Although the particular problem we used did not
model a changing environment, an explicit represent of
time would be required if actions had side effects or if
objects in the environment had changing states. For
instance, a particular environment might contain walls that
crumble over time. We asked the system to find the
shortest valid path between two particular locations on the
graph. Valid paths consisted of movements between
adjacent locations that did not contain active obstacles.
These types of problems are important to the object
tracking and motion planning domains.
 We initially compared our system against LazySAT
because it is similar to our approach in that it also supports
the lazy instantiation of constraints. Through
experimentation, we determined what values of
LazySAT‟s parameters enabled high performance on this
task. LazySAT, however, is based on a randomized local
search, which is inefficient for many structured domains.
Therefore, we ran the same set of tests on MiniMaxSAT
(Heras, Larrrosa et al. 2007), which is one of the best
DPLL-based systematic SAT-solvers. Because Markov
logic is not complete and cannot report unsatisfiability, we
were forced to select a configuration of space in which a
valid path existed.
 The evaluation problem involved a 9-location graph
with one obstacle, which had to be circumvented. We were
limited to 9 locations because the performance of the
systems degraded on larger problems. To determine how
well each system handled time, we created ten versions of
the problem from 5 to 50 time points in increments of 5.
For each condition and each system, we ran 10 trials and
recorded the average runtime. These results are displayed
in Figure 1. While our system was consistently better than
LazySAT, MiniMaxSAT outperformed both until it had to
contend with more than 30 time points. Our system
required approximately constant time to solve the problem
due to the fact that intervals make this task equivalent to
the case of planning without explicit time points.
 A second evaluation was conducted to show that the
memory retrieval subsystem allowed change minimization

2
))(1(nn

Published by Atlantis Press, © the authors
 5

problems to be solved efficiently. We ran these tests on the
system with and without the MRC activated. These
problems consisted of a number of attribute value
observations that involved the color of an object. For
instance, suppose the following facts were given as input:
Color(car, red, t1), Color(car, blue, t6), and Color(car,
green, t11). The system would then be tasked with finding
the least costly model that explained this data, namely that
the color changed from red to blue and then from blue to
green.
 The results from this evaluation are depicted in Figure 2.
Not only does enabling the MRC permit the change
minimization problems to be solved in less time than with
the basic system, but it also increases the upper limit on
problem size. Without the MRC, our system ran for over
50,000 seconds attempting to solve the 5 attribute value
problem. These results demonstrate that the elimination of
irrelevant constraints is a powerful technique for
improving the performance of SAT-solvers.

Figure 1: Path planning problem results

Figure 2: Change minimization results

Conclusion

Although SAT is in some cases an efficient approach to
domain-general problem solving, it does not scale well to
the large search spaces that result from tasks that require an
explicit representation of time. Temporal intervals help to
reduce the size of such problems, but can be used
effectively only with SAT-solvers that permit the
introduction of novel objects throughout inference. Hence,

we created a system that combines specialized inference
techniques with a DPLL-like algorithm. This system was
shown to outperform MiniMaxSAT and LazySAT in a
series of evaluations involving a simple path planning
domain.
 When time is represented explicitly, it is also beneficial
to incorporate common sense reasoning that exploits
common patterns in real-world problem instances.
Towards this end, a memory retrieval subsystem was
developed that prevented the exploration of fruitless paths
in the DPLL search tree under certain conditions. This
technique was demonstrated to increase the efficiency of
how our system solves the change minimization problem.

References

Allen, J. (1981). Maintaining knowledge about temporal intervals. TR-86,

Computer Science Department, University of Rochester, Rochester, NY.

Cassimatis, N. L. (2002). Polyscheme: A Cognitive Architecture for

Integrating Multiple Representation and Inference Schemes. Media

Laboratory. Cambridge, MA, Massachusetts Institute of Technology.

Cassimatis, N. L., M. Bugjaska, et al. (2007). An Architecture for

Adaptive Algorithmic Hybrids. AAAI-07, Vancouver, BC.

Davis, M., G. Logemann, et al. (1962). "A Machine Program for Theorem

Proving." Communications of the ACM 5(7): 394–397.

Een, N. and N. Sorensson (2005). MiniSat-A SAT solver with conflict-

clause minimization. SAT 2005 Competition.

Feldman, R. and M. C. Golumbic (1990). "Optimization algorithms for

student scheduling via constraint satisfiability." Computer Journal 33:

356-364.

Heras, F., J. Larrrosa, et al. (2007). "MiniMaxSAT: a new weight Max-

SAT solver." International Conference on Theory and Application of

Satisfiability Testing: 41-55.

Kautz, H. and B. Selman (1999). Unifying SAT-based and Graph-based

Planning. IJCAI-99.

Marques-Silva, J. P. and K. A. Sakallah (2000). "Boolean satisfiability in

electronic design automation." Proc., IEEE/ACM Design Automation

Conference (DAC '00).

Moskewicz, M., C. Madigan, et al. (2001). Chaff: Engineering an

Efficient SAT Solver 39th Design Automation Conference, Las Vegas.

Mueller, E. T. (2004). "Event calculus reasoning through satisfiability."

Journal of Logic and Computation 14(5): 703-730.

Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern

Approach, Prentice Hall.

Shanahan, M. (1997). Solving the Frame Problem, a mathematical

investigation of the common sense law of inertia, M.I.T. Press.

Shanahan, M. and M. Witkowski (2004). "Event calculus planning

through satisfiability." Journal of Logic and Computation 14(5): 731-745.

Singla, P. and P. Domingos (2006). Memory-efficient inference in

relational domains. Proceedings of the Twenty-First National Conference

on Artificial Intelligence, Boston, MA.

Smith, A. and A. Veneris (2005). "Fault diagnosis and logic debugging

using boolean satsifiability." IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 24.

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50
No. Time Points

R
u

n
 T

im
e
 (

s
e
c
)

GenDPLL
MiniMaxSAT
LazySAT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7
No. Attribute Values

R
u

n
 T

im
e
 (

s
e
c
)

Without MRC
With MRC

Published by Atlantis Press, © the authors
 6

	Efficient Constraint-Satisfaction in Domains with Time
	Perrin G. Bignoli, Nicholas L. Cassimatis, Arthi Murugesan
	{bignop, cassin, muruga}@rpi.edu
	Abstract
	Introduction
	Language
	System Architecture
	Rule Matching Component
	Temporal Constraint Graph Component
	Identity Constraint Graph Component
	Memory Retrieval Component
	Results
	Conclusion
	References

