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Abstract 

Satisfiability (SAT) testing methods have been used 
effectively in many inference, planning and constraint 
satisfaction tasks and thus have been considered a 
contribution towards artificial general intelligence.  
However, since SAT constraints are defined over atomic 
propositions, domains with state variables that change over 
time can lead to extremely large search spaces. This poses 
both memory- and time-efficiency problems for existing 
SAT algorithms. In this paper, we propose to address these 
problems by introducing a language that encodes the 
temporal intervals over which relations occur and an 
integrated system that satisfies constraints formulated in this 
language. Temporal intervals are presented as a compressed 
method of encoding time that results in significantly smaller 
search spaces. However, intervals cannot be used efficiently 
without significant modifications to traditional SAT 
algorithms. Using the Polyscheme cognitive architecture, 
we created a system that integrates a DPLL-like SAT-
solving algorithm with a rule matcher in order to support 
intervals by allowing new constraints and objects to be 
lazily instantiated throughout inference. Our system also 
includes constraint graphs to compactly store information 
about temporal and identity relationships between objects. 
In addition, a memory retrieval subsystem was utilized to 
guide inference towards minimal models in common sense 
reasoning problems involving time and change. We 
performed two sets of evaluations to isolate the 
contributions of the system‟s individual components. These 
tests demonstrate that both the ability to add new objects 
during inference and the use of smart memory retrieval 
result in a significant increase in performance over pure 
satisfiability algorithms alone and offer solutions to some 
problems on a larger scale than what was possible before. 

Introduction 

Many AI applications have been successfully framed as 
SAT problems: planning (Kautz and Selman 1999), 
computer-aided design (Marques-Silva and Sakallah 2000), 
diagnosis (Smith and Veneris 2005), and scheduling 
(Feldman and Golumbic 1990). Although SAT-solvers 
have successfully handled problems with millions of 
clauses, tasks that require an explicit representation of time 
can exceed their capacities. 
 Adding a temporal dimension to a problem space has the 
potential to greatly expand search space sizes because SAT 
algorithms propositionalize relational constraints. The most 

direct way to incorporate time is to have a copy of each 
state variable for every time point over which the system 
reasons. This increases the number of propositions by a 
factor equal to the number of time points involved. Since 
SAT algorithms generally become slower as the size of a 
problem increases, adding a temporal dimension to even 
relatively simple problems can make them intractable. 
 Although problems with time require more space to 
encode, the true expense of introducing time stems from 
the additional cost required to find a SAT solution. 
Consider a task that requires the comparison of all the 
possible ways that a car can visit three locations in order. If 
the problem has no reference to time points, there is only 
one solution: the car just moves from a to b to c. On the 
other hand, there are clearly more possibilities, since the 
car could potentially move or not move at every time. 
Compared to other SAT-solvers, LazySAT (Singla and 
Domingos 2006), which lazily instantiates constraints, is 
less affected by the increased memory demands of larger 
search spaces. Unfortunately, lazy instantiation will not 
increase the tractability of larger problems with respect to 
runtime. 
 There is, however, a more efficient way of representing 
time. Since it is unlikely that the truth value of a 
proposition will change at every time point, temporal 
intervals can be used to denote segments of contiguous 
time points over which its value is constant. This practice 
alleviates the need to duplicate all propositions at every 
time point for most problem instances, thus significantly 
reducing the search space size. Intervals also mitigate the 
arbitrary granularity of time because they are continuous 
and scale independent. 
 However, existing SAT solvers cannot process intervals 
efficiently because they do not allow new objects to be 
introduced during the course of inference. It is clearly 
impossible to know exactly which temporal intervals will 
be required. Therefore, every possible interval must be 
defined in advance. Since              unique intervals can be 
defined over n times, there would be little advantage to use 
them with current searching methods. 
 To capture the benefits of SAT while supporting the use 
of intervals, we created an integrated system that combines 
a DPLL-like search with several specialized forms of 
inference: a rule matcher, constraint graphs, and memory 
retrieval. Rule matching allows our system to both lazily 
instantiate constraints and introduce new objects during 
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inference. Constraint graphs compactly store temporal and 
identity relationships between objects. Memory retrieval 
supports common sense reasoning about time. Although 
SAT has previously been applied to planning (Shanahan 
and Witkowski 2004) and reasoning (Mueller 2004) with 
the event calculus, we present a novel approach. 

Language 

We have specified a language that can express 
relationships between objects at different points in time. 
This language incorporates temporal intervals and a 
mechanism for introducing new objects during inference. 
For example, in path planning tasks, it is often useful to 
have a condition such as: If at location p1 and must be at 
location p2, which is not adjacent to p1, then move to some 
location px that is adjacent to p1 at the next possible time. 
We write this constraint as: 
 
 
 
 
Note that we prefix arguments with a „?‟ to denote 
variables. Variables permit this one constraint to apply to 
all locations in the system. Additionally, we can assign 
weights to constraints as a measure of their importance. 
Because this constraint holds for any path, it is given an 
infinite weight to indicate that it must be satisfied. 
 Formally, constraints have the form 
                                         , where w is a positive rational 
number, m ≥ 0 and n ≥ 1. Ai and Cj are first order literals. 
Literals have the form P(arg1, …, argn), where P is a 
predicate, argi is a term, and argn must be a time point or 
interval. Terms that are prefixed with a „?‟ are variables; 
others are constant “objects.” A grounded predicate is one 
in which no term is a variable. Predicates specify relations 
over the first n-1 terms, which hold at time argn. There is a 
special type of relation called an attribute. Attributes are 
predicates, P, with three terms, o, v, and t, such that only 
one relation of the form P(o, v, t) holds for each o at every 
t. The negation of a literal is expressed with the ¬ operator. 
Every literal is mapped to a truth value.  
 If all of the literals in a constraint are grounded, then the 
constraint itself is grounded. Only grounded constraints 
can be satisfied or broken, according to the truth value of 
its component literals. A constraint is broken iff every 
antecedent literal is assigned to true and every consequent 
literal is assigned to false. The cost of breaking a constraint 
is given by w, which is infinite if the constraint is hard. 
 Some predicates and objects are included in the 
language. For instance, Meets, Before, and Includes are 
temporal relations that are similar to the predicates in 
Allen‟s interval calculus (Allen 1981). We reserve a set of 
objects of the form {t1, …, tn}, where n is the number of 
times in the system. This set is known as the native times. 
Another time, E, denotes eternity and is used in literals 
whose assignments do not change over time. 

 A model of a theory in this language consists of a 
complete assignment, which is a mapping of every literal 
to a truth value. Valid models are those such that their 
assignment permits all hard constraints to be satisfied. All 
models have an associated cost equal to the cost of its 
broken constraints. Each theory has many valid models, 
but it is often useful to find one of the models with the 
minimum cost. For instance, this process can perform 
change minimization, a form of commonsense reasoning 
motivated by the frame problem (Shanahan 1997). 

System Architecture 

We created an integrated system using the Polyscheme 
cognitive architecture (Cassimatis 2002) in order to 
efficiently solve problems with time. This approach 
allowed us to glean the benefits of SAT while capitalizing 
on the properties of specialized forms of inference. It is 
easiest to describe how our system works by framing it as a 
DPLL-like search. DPLL (Davis, Logemann et al. 1962) 
performs a branch-and-bound depth first search that is 
guaranteed to be complete for finite search spaces. The 
algorithm searches for the best assignment by making 
assumptions about the literals that appear in its constraint 
set. An assumption consists of selecting an unassigned 
literal, setting it to true or false, and then performing 
inference based on this assignment. When necessary, the 
search backtracks to previous decision points to explore the 
ramifications of making the opposite assumption.  
 The DPLL-FIRST procedure in Algorithm 1 takes a set 
of constraints, c, as input and outputs an assignment of 
literals to truth values that minimizes the cost of broken 
constraints. In the input constraint set, there must be at 
least one fully grounded constraint with a single literal. 
Such constraints are called facts. Within the DPLL-FIRST 
procedure, several data structures are declared and passed 
to DPLL-RECUR, which is illustrated in Algorithm 2. 
First, there is a structure, assign, which stores the current 
assignment of literals to truth values. The facts specified in 
the input are stored in assign with an assignment that 
corresponds to the valence of the fact‟s literal. Second, 
there is a queue, q, which stores the literals that have been 
deemed relevant by the system in order to perform 
inference after the previous assumption. At the beginning, 
q contains the facts in the input. Third, b stores the best 
total assignment that has been found so far. Fourth, the cost 
of b is stored in o. Initially, b is empty and o is infinite.  
 

Algorithm 1. DPLL-FIRST(c): 
 return DPLL-RECUR(c, assign, q, o, b) 

 
 Each time DPLL_RECUR is called, it performs an 
elaboration step that infers new assignments based on the 
current assumption. Initially, when there is no assumption, 
the elaboration step attempts to infer new information from 
the constraints specified in the input. After elaboration, the 
current assignment is examined to determine if one of the 
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three termination conditions is met. The first condition is if 
the assignment is contradictory because the same literal has 
been assigned to both true and false. The second condition 
is if the cost of the current assignment exceeds the lowest 
cost of a complete assignment that has been discovered in 
previous iterations. Since new assignments can never 
reduce the total cost, it is unnecessary to continue 
searching. The third condition is if the current assignment 
is complete. In all of these cases, the search backtracks to a 
previous assumption and investigates any remaining 
unexplored possibilities. Afterwards, the search selects an 
unassigned literal and creates two new branches in the 
search tree:  one where the literal is assumed to be true and 
one where it is assumed to be false. DPLL-RECUR is then 
invoked on those subtrees and the assignment from the 
branch with the lower cost is returned. 
 

Algorithm 2. DPLL-RECUR(c, assign, q, o, b) 
 

 call ELABORATION(c, assign, q) 
 if Contradictory(assign) then 
  return Fail 
 else if Cost(assign) > o 
  return Fail 
 else if Complete(assign) 
  return assign 
 end if 
 u ← next element of q 
 newassign ← assign with u assigned to true 
 b1 ← call DPLL-RECUR(c, newassign, o, b) 
 newassign ← assign with u assigned to false 
 b2 ← call DPLL-RECUR(c, newassign, o, b) 
 if Cost(b1) < Cost(b2) then 
  return b1 
 else 
  return b2 
 end if 

 
 The elaboration step in basic DPLL is called unit-
propagation. Unit-propagation examines the current 
assignment to determine if there are any constraints that 
have exactly one literal unassigned. If such constraints 
exist and exactly one assignment (i.e., true or false) for that 
literal satisfies the constraint, then DPLL makes that 
assignment immediately instead of through a later 
assumption. Our system augments this basic technique by 
introducing several more specialized forms of inference. 
 To understand the importance of elaboration, consider 
that all of the best available complete SAT-solvers are 
based on some version of DPLL (Moskewicz, Madigan et 
al. 2001; Een and Sorensson 2005). DPLL is so effective 
because its elaboration step eliminates the need to explore 
large numbers of unnecessary assumptions. It is more 
efficient to infer assignments directly rather than to make 
assumptions, because each assumption is equivalent to 
creating a new branch in DPLL‟s abstract search tree. 
Elaboration also allows early detection of contradictions in 
the current assignment. 

 Despite its elaboration step, DPLL is unable to handle 
the large search spaces that occur when time is explicitly 
represented. The goal of our approach is to improve 
elaboration by using a combination of specialized 
inference routines. Previous work (Cassimatis, Bugjaska et 
al. 2007) has outlined the implementation of SAT solvers 
in Polyscheme. Following that approach, we implemented 
DPLL using Polyscheme‟s focus of attention. One call to 
DPLL-RECUR is implemented by one focus of attention in 
Polyscheme. Logical worlds are used to manage DPLL 
assumptions. For each assumption, an alternative world is 
created in which the literal in question is either true or 
false. Once Polyscheme focuses on an assumption literal, it 
is elaborated by polling the opinions of several specialists. 
These specialists implement the specialized inference 
routines upon which our system relies. One of these 
specialists, the rule matcher, lazily instantiates grounded 
constraints that involve the current assumption. The 
assignment of a literal is given by Polyscheme‟s final 
consensus on the corresponding proposition. This 
elaboration constitutes the main difference between our 
system and standard DPLL. 
 Our elaboration step, which is illustrated in Algorithm 3, 
loops over the literals that have been added to the queue 
because their assignments were modified by previous 
inference. Two procedures are performed on each of these 
literals. First, a rule matcher is used to lazily instantiate 
grounded constraints from relevant variable constraints 
provided in the input. Relevant constraints are those that 
contain a term that corresponds to the current literal in 
focus. These constraints are “fired” to propagate truth 
value from the antecedent terms to the consequent terms. 
Newly grounded literals, which may contain new objects, 
are introduced during this process. Any such literals are 
added to the assignment store and the queue.  
 The second procedure involves formulating an 
assignment for the current proposition based on 
suggestions from the various components of the system. 
For instance, the temporal constraint graph is queried here 
in the case that the proposition being examined describes a 
temporal relationship. Likewise, the identity constraint 
graph would be queried if the examined proposition was an 
identity relationship. In the extended system, this is the 
step at which the memory retrieval mechanism would be 
utilized. These opinions are combined with the old 
assignment of the proposition to produce a new 
assignment. If the new assignment differs from the old one, 
the literal is placed back on the queue. 
 

Algorithm 3. ELABORATION(c, assign, q): 
 

 while q is not empty do 
  l ← the next element in q 
  ris ← call Match(l, c, q) 
     delta ←   
  for each ri in ris do 
   delta ← delta   call Propagate(ri, assign) 
  end for 
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  rs ← the rule system‟s opinion on l 
  tc ← the temporal constraint graph‟s opinion on l 
  ic ← the identity constraint graph‟s opinion on l 
  mr ← the memory retrieval system‟s opinion on l 
  c ← call Combine(rs, tc, ic, mr) 
  if c ≠ l‟s assignment in assign then 
   delta ← delta   l 
  end if 
  q ← q   delta 
 end while 
 return 

Rule Matching Component 

Lazy instantiation is efficient because it avoids the creation 
of constraints that do not need to be considered to produce 
an acceptable assignment. We accomplish lazy 
instantiation by treating constraints with open variables as 
templates that can be passed to a rule matcher. The rule 
matching component (RMC) attempts to bind the 
arguments of the last dequeued literal to variables in the 
constraint rules. A binding is valid if it allows all variables 
in the antecedent terms of a constraint to be bound to 
objects in the arguments of literals that are stored in the 
system‟s memory. All valid bindings are evaluated as 
constraints by propagating truth value from the antecedents 
to the consequents. A constraint is considered broken only 
if the grounded literals in its antecedent terms have been 
assigned to true and the propositions in its consequent 
terms have been assigned to false. 
 A simple example will illustrate the binding process. Let 
the literal currently being assigned be                               . 
If                                                                    
appears as a constraint, then the following fully grounded 
instance is created:  
 
 
 
In this case, ?x binds to car1, ?y binds to road, ?t1 binds to 
t1, and ?t2 binds to a new object, tnew. If Location(car1, 
road, t1) is assigned to true and Location(car1, road, 
t_new) is later assigned to false, then any models that 
contain that assignment will accrue a cost of 10. 

Temporal Constraint Graph Component 

As the number of objects in a problem instance increase, so 
do the number of literals and constraints. For instance, 
when time objects are introduced, it is often necessary to 
know how those times are ordered. If there are n times in 
the system, approximately   literals are required to 
represent all of the values of a binary relation over those 
times. Usually, only a small portion of these literals 
provide useful information for solving the problem. Instead 
of eagerly encoding all temporal relations, we created a 
component that could be queried on demand to determine 
if a given relation holds according to the current 
knowledge of the system. This component represents 
relations in graphical form. 

 Using a graph enables the system to derive new entailed 
relations without storing them explicitly as propositions. 
All of the fundamental temporal relationships described by 
Allen can be represented in the following way. Whenever a 
literal that involves such a relationship is encountered, the 
temporal constraint graph (TCGC) decomposes the time 
object arguments into three parts: the start point, the 
midpoints, and the end point. These parts form the nodes of 
the graph. Edges are created between two nodes in the 
graph if their temporal relationship is known.  
 Every interval relationship can be derived from only two 
types of relationships on the parts of times: Before and 
Equals. A time object‟s start point is defined to be before 
its midpoints and its midpoints are before its end point. By 
creating edges between the parts of different time objects, 
it is possible to record relationships between the objects 
themselves. For instance, to encode Meets(t1, t2, E) in the 
graph, one would use the relationship: Equals(end-t1, 
start-t2, E). To illustrate why the graph is an efficient way 
to store this information, consider the following example. 
If it is known that Meets(t1, t2, E) and Meets(t2, t3, E), 
then the graph can be traversed to find Before(t1, t3, E), 
among other relationships. Thus, these propositions are 
stored implicitly and do not need to be assigned unless they 
are present in a grounded constraint. 

Identity Constraint Graph Component 

The identity constraint graph component (ICGC) is similar 
to the TCGC, but it handles propositions about the identity 
of objects. This graph consists of nodes that represent 
objects and edges that represent either equality or 
inequality. By traversing the graph, it is possible to capture 
the transitivity of the identity relation. Although a rule 
could be used to generate the transitivity property, doing so 
has the potential to drastically increase the number of 
propositions over which DPLL must search.  
 Another important use for the ICGC is that it can detect 
inconsistencies in truth assignments to identity 
propositions. Consider that the following set of identity 
propositions is known: Same(a, b), Same(b, c). Then, the 
proposition, ¬Same(a, c), is examined and assumed to be 
true. Clearly this is inconsistent, but without including a 
rule that defines the properties of identity, the system will 
continue to perform inference based on these facts until an 
explicit contradiction is encountered. Traversing the edges 
connecting a, b, and c in the graph will indicate that this 
scenario is contradictory. This information can be reported 
to the system as a whole during elaboration. 

Memory Retrieval Component 

Systems that explicitly represent time often also have to 
reason about change. However, in situations with imperfect 
knowledge, reasoning about change can be difficult. 
Consider the following information about the color of a 
car, assuming that Location is an attribute: Color(car, red, 
t1), Color(car, blue, t6), Color(car, green, t11). In between 
t1 and t6 and t6 and t11, it is consistent for the car to be 
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any color. However, in many scenarios, the car would 
remain red until it was painted blue and then blue until it 
was painted green. Although the world is dynamic, it also 
exhibits inertia. The principle of change minimization 
states that changes to particular objects are relatively 
infrequent and when changes do occur, they will be salient. 
It is worthwhile for a reasoning system to bet on such 
recurring patterns, because doing so significantly reduces 
the complexity of many problems.  
 We can frame the change minimization problem as a 
weighted SAT problem as follows. Given a set of attribute 
literals that involve the same first term, but whose second 
term changes over time, determine the minimum number 
of changes required to explain the data. To this end, 
constraints can be defined so that the least costly models 
will be those that exhibit the smallest possible number of 
attribute value changes. The memory retrieval component 
(MRC) is designed to accommodate this procedure by 
regulating which attribute values appear in grounded 
constraints. Only attribute values with some prior evidence 
in memory are considered. As an example, the car could 
have been purple at t2 and brown at t3, but models that 
contain such literals are automatically excluded. 
 To control which values are considered, the MRC makes 
a copy of each literal that encodes an attribute with a native 
time index. This copy is modified to contain a time index 
that corresponds to an open-ended interval. Only when 
new attribute values are observed will that interval‟s 
endpoints be constrained. For instance, when the system 
elaborates Color(car, red, t1), a new literal Color(car, red, 
t-car-red) will be introduced. Because it uses a content-
addressable retrieval system, the MRC will henceforth 
report that the color of the car is likely to be red at every 
time point until new information is discovered. If the literal 
Color(car, blue, t6) is observed, then the literal Color(car, 
blue, t-car-blue) will be introduced. Also, constraints will 
be added to limit the right side of the t-car-red interval at 
t6 and the left side of the t-car-blue interval at t1. 
 Even with this optimization, change minimization is 
expensive if performed naively, since there are 
            possible transitions between n attribute values if 
nothing is known about when the values hold relative to 
each other. For instance, if a car is seen to be red, then 
blue, then green, the naïve formulation will consider such 
possibilities as a change from green to red even though this 
is clearly impossible. The change detection mechanism in 
the MRC utilizes the TCGC in conjunction with content-
accessible memory to significantly reduce the number of 
impossible changes that are considered by the system. 
When an attribute literal containing an interval is 
elaborated, the only values that are adjacent in time to the 
current interval will be considered. Since the intervals do 
not have completely fixed endpoints, these neighboring 
times can be detected by looking at what times the current 
interval could possibly include. For instance, once it has 
been established that there is a change between t1 and t6, 
the interval created around t1 can no longer include t11, so 

the location t1 will not appear as a possible previous state 
of the location at t11. 

Results 

Our system was designed to improve the efficiency of 
applying SAT-solving to problems that involve an explicit 
representation of time. In order to accomplish this goal, we 
used Polyscheme to implement a DPLL-like algorithm 
with specialized forms of inference that permitted the 
creation of new objects. The ability to introduce new 
objects allowed us to use intervals to reduce the search 
space of these problems.  
 In order to test the level of improvement gained by the 
ability to add new objects independently of other 
techniques, we ran an evaluation with the memory retrieval 
component deactivated. The task we selected was optimal 
path planning through space. We represented this space as 
a graph. Although the particular problem we used did not 
model a changing environment, an explicit represent of 
time would be required if actions had side effects or if 
objects in the environment had changing states. For 
instance, a particular environment might contain walls that 
crumble over time. We asked the system to find the 
shortest valid path between two particular locations on the 
graph. Valid paths consisted of movements between 
adjacent locations that did not contain active obstacles. 
These types of problems are important to the object 
tracking and motion planning domains.  
 We initially compared our system against LazySAT  
because it is similar to our approach in that it also supports 
the lazy instantiation of constraints. Through 
experimentation, we determined what values of 
LazySAT‟s parameters enabled high performance on this 
task. LazySAT, however, is based on a randomized local 
search, which is inefficient for many structured domains. 
Therefore, we ran the same set of tests on MiniMaxSAT 
(Heras, Larrrosa et al. 2007), which is one of the best 
DPLL-based systematic SAT-solvers.  Because Markov 
logic is not complete and cannot report unsatisfiability, we 
were forced to select a configuration of space in which a 
valid path existed. 
 The evaluation problem involved a 9-location graph 
with one obstacle, which had to be circumvented. We were 
limited to 9 locations because the performance of the 
systems degraded on larger problems. To determine how 
well each system handled time, we created ten versions of 
the problem from 5 to 50 time points in increments of 5. 
For each condition and each system, we ran 10 trials and 
recorded the average runtime. These results are displayed 
in Figure 1. While our system was consistently better than 
LazySAT, MiniMaxSAT outperformed both until it had to 
contend with more than 30 time points. Our system 
required approximately constant time to solve the problem 
due to the fact that intervals make this task equivalent to 
the case of planning without explicit time points. 
 A second evaluation was conducted to show that the 
memory retrieval subsystem allowed change minimization 
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problems to be solved efficiently. We ran these tests on the 
system with and without the MRC activated. These 
problems consisted of a number of attribute value 
observations that involved the color of an object. For 
instance, suppose the following facts were given as input: 
Color(car, red, t1), Color(car, blue, t6), and Color(car, 
green, t11). The system would then be tasked with finding 
the least costly model that explained this data, namely that 
the color changed from red to blue and then from blue to 
green.  
 The results from this evaluation are depicted in Figure 2. 
Not only does enabling the MRC permit the change 
minimization problems to be solved in less time than with 
the basic system, but it also increases the upper limit on 
problem size. Without the MRC, our system ran for over 
50,000 seconds attempting to solve the 5 attribute value 
problem. These results demonstrate that the elimination of 
irrelevant constraints is a powerful technique for 
improving the performance of SAT-solvers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Path planning problem results 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Change minimization results 
 

Conclusion 

Although SAT is in some cases an efficient approach to 
domain-general problem solving, it does not scale well to 
the large search spaces that result from tasks that require an 
explicit representation of time.  Temporal intervals help to 
reduce the size of such problems, but can be used 
effectively only with SAT-solvers that permit the 
introduction of novel objects throughout inference. Hence, 

we created a system that combines specialized inference 
techniques with a DPLL-like algorithm. This system was 
shown to outperform MiniMaxSAT and LazySAT in a 
series of evaluations involving a simple path planning 
domain. 
 When time is represented explicitly, it is also beneficial 
to incorporate common sense reasoning that exploits 
common patterns in real-world problem instances. 
Towards this end, a memory retrieval subsystem was 
developed that prevented the exploration of fruitless paths 
in the DPLL search tree under certain conditions. This 
technique was demonstrated to increase the efficiency of 
how our system solves the change minimization problem. 
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